im2sequence_op.h 5.8 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   You may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

17
#include "paddle/framework/data_layout.h"
G
gongweibao 已提交
18 19
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
G
gongweibao 已提交
20
#include "paddle/operators/math/im2col.h"
21
#include "paddle/operators/math/math_function.h"
G
gongweibao 已提交
22 23 24 25

namespace paddle {
namespace operators {

W
wanghaoshuang 已提交
26 27 28
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

W
wanghaoshuang 已提交
29 30 31
inline int get_output_size(int img_size, int block_size, int stride,
                           int padding) {
  return (1 + (img_size + 2 * padding - block_size + stride - 1) / stride);
G
gongweibao 已提交
32 33
}

W
wanghaoshuang 已提交
34
template <typename DeviceContext, typename T>
35
class Im2SequenceKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
36
 public:
G
gongweibao 已提交
37
  void Compute(const framework::ExecutionContext& ctx) const override {
G
gongweibao 已提交
38
    const Tensor* in = ctx.Input<Tensor>("X");
W
wanghaoshuang 已提交
39
    LoDTensor* out = ctx.Output<LoDTensor>("Out");
G
gongweibao 已提交
40
    out->mutable_data<T>(ctx.GetPlace());
41 42 43 44
    // TODO(wanghaoshuang): Add layout checker after 'set_layout'
    // being available for python API
    // PADDLE_ENFORCE_EQ(in->layout(), framework::DataLayout::kNCHW,
    //                  "Input(X) layout must be NCHW");
G
gongweibao 已提交
45
    auto in_dim = in->dims();
W
wanghaoshuang 已提交
46 47
    int batch_size = in_dim[0];
    int img_channels = in_dim[1];
G
gongweibao 已提交
48 49
    int img_height = in_dim[2];
    int img_width = in_dim[3];
W
wanghaoshuang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    int block_height = ctx.Attr<int>("block_height");
    int block_width = ctx.Attr<int>("block_width");
    int stride_height = ctx.Attr<int>("stride_height");
    int stride_width = ctx.Attr<int>("stride_width");
    int padding_height = ctx.Attr<int>("padding_height");
    int padding_width = ctx.Attr<int>("padding_width");

    int output_height = get_output_size(img_height, block_height, stride_height,
                                        padding_height);
    int output_width =
        get_output_size(img_width, block_width, stride_width, padding_width);

    const std::vector<int> dilations({1, 1});
    const std::vector<int> strides(
        {stride_height, stride_width, stride_height, stride_width});
    const std::vector<int> paddings(
        {padding_height, padding_width, padding_height, padding_width});

    auto out_dims = out->dims();
    out->Resize({batch_size, out->numel() / batch_size});
    for (int i = 0; i < batch_size; i++) {
      const Tensor src =
          in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
      Tensor dst = out->Slice(i, i + 1).Resize({output_height, output_width,
                                                img_channels, block_height,
                                                block_width});
G
gongweibao 已提交
76

W
wanghaoshuang 已提交
77 78 79
      math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      f(dev_ctx, src, dilations, strides, paddings, &dst);
G
gongweibao 已提交
80
    }
W
wanghaoshuang 已提交
81 82 83 84 85
    out->Resize(out_dims);

    // set lod information
    // TODO(wanghaoshuang): Move this to InferShape
    framework::LoD lod(1);
86
    lod[0].reserve(batch_size + 1);
W
wanghaoshuang 已提交
87
    for (int i = 0, offset = 0; i < batch_size + 1; ++i) {
88
      lod[0][i] = offset;
W
wanghaoshuang 已提交
89 90 91
      offset += output_height * output_width;
    }
    out->set_lod(lod);
G
gongweibao 已提交
92 93 94
  }
};

W
wanghaoshuang 已提交
95
template <typename DeviceContext, typename T>
96
class Im2SequenceGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
97 98
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
G
add gpu  
gongweibao 已提交
99
    auto* in = ctx.Input<Tensor>("X");
W
wanghaoshuang 已提交
100 101
    Tensor* d_out =
        const_cast<Tensor*>(ctx.Input<Tensor>(framework::GradVarName("Out")));
W
wanghaoshuang 已提交
102
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
G
gongweibao 已提交
103 104 105
    d_x->mutable_data<T>(ctx.GetPlace());

    auto x_v = framework::EigenVector<T>::Flatten(*d_x);
W
wanghaoshuang 已提交
106 107
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    x_v.device(place) = x_v.constant(0.0);
G
add gpu  
gongweibao 已提交
108 109

    auto in_dim = in->dims();
W
wanghaoshuang 已提交
110 111
    int batch_size = in_dim[0];
    int img_channels = in_dim[1];
G
add gpu  
gongweibao 已提交
112 113 114
    int img_height = in_dim[2];
    int img_width = in_dim[3];

W
wanghaoshuang 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    int block_height = ctx.Attr<int>("block_height");
    int block_width = ctx.Attr<int>("block_width");
    int stride_height = ctx.Attr<int>("stride_height");
    int stride_width = ctx.Attr<int>("stride_width");
    int padding_height = ctx.Attr<int>("padding_height");
    int padding_width = ctx.Attr<int>("padding_width");
    int output_height = get_output_size(img_height, block_height, stride_height,
                                        padding_height);
    int output_width =
        get_output_size(img_width, block_width, stride_width, padding_width);

    const std::vector<int> dilations({1, 1});
    const std::vector<int> strides(
        {stride_height, stride_width, stride_height, stride_width});
    const std::vector<int> paddings(
        {padding_height, padding_width, padding_height, padding_width});

    auto d_out_dims = d_out->dims();
    d_out->Resize({batch_size, d_out->numel() / batch_size});
    for (int i = 0; i < batch_size; i++) {
      Tensor dst =
          d_x->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
      const Tensor src = d_out->Slice(i, i + 1).Resize(
          {output_height, output_width, img_channels, block_height,
           block_width});
W
wanghaoshuang 已提交
140 141 142
      math::Col2ImFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      f(dev_ctx, src, dilations, strides, paddings, &dst);
G
add gpu  
gongweibao 已提交
143
    }
W
wanghaoshuang 已提交
144
    d_out->Resize(d_out_dims);
G
gongweibao 已提交
145 146 147 148 149
  }
};

}  // namespace operators
}  // namespace paddle