im2sequence_op.cc 5.4 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/operators/im2sequence_op.h"
G
gongweibao 已提交
16 17 18 19

namespace paddle {
namespace operators {

20
class Im2SequenceOp : public framework::OperatorWithKernel {
G
gongweibao 已提交
21 22 23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
G
gongweibao 已提交
26
    PADDLE_ENFORCE(ctx->HasInput("X"),
27
                   "Input(X) of Im2SequenceOp should not be null.");
G
gongweibao 已提交
28
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
29
                   "Output(Out) of Im2SequenceOp op should not be null.");
G
gongweibao 已提交
30

G
gongweibao 已提交
31
    auto in_dim = ctx->GetInputDim("X");
G
gongweibao 已提交
32 33
    PADDLE_ENFORCE_EQ(in_dim.size(), 4,
                      "Input(X) format  must be 4D tensor, eg., NCHW.");
G
gongweibao 已提交
34

W
wanghaoshuang 已提交
35 36 37 38 39 40
    int block_height = ctx->Attrs().Get<int>("block_height");
    int block_width = ctx->Attrs().Get<int>("block_width");
    int stride_height = ctx->Attrs().Get<int>("stride_height");
    int stride_width = ctx->Attrs().Get<int>("stride_width");
    int padding_height = ctx->Attrs().Get<int>("padding_height");
    int padding_width = ctx->Attrs().Get<int>("padding_width");
G
gongweibao 已提交
41

W
wanghaoshuang 已提交
42 43
    int batch_size = in_dim[0];
    int img_channels = in_dim[1];
G
gongweibao 已提交
44 45
    int img_height = in_dim[2];
    int img_width = in_dim[3];
G
gongweibao 已提交
46

W
wanghaoshuang 已提交
47 48 49 50
    int output_height = get_output_size(img_height, block_height, stride_height,
                                        padding_height);
    int output_width =
        get_output_size(img_width, block_width, stride_width, padding_width);
G
gongweibao 已提交
51

W
wanghaoshuang 已提交
52 53 54
    ctx->SetOutputDim("Out", {batch_size * output_height * output_width,
                              img_channels * block_height * block_width});
    // TODO(wanghaoshuang): cal lod in complie time
G
gongweibao 已提交
55 56 57
  }
};

58
class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker {
G
gongweibao 已提交
59
 public:
60
  Im2SequenceOpMaker(OpProto* proto, OpAttrChecker* op_checker)
G
gongweibao 已提交
61
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
62 63 64 65 66 67
    AddInput("X",
             "(Tensor)The input tensor has NCHW format."
             "N: batch size"
             "C: channels"
             "H: height"
             "W: width");
68
    AddOutput("Out", "(LodTensor)The output data of im2sequence op,");
W
wanghaoshuang 已提交
69 70 71 72 73 74
    AddAttr<int>("block_height", "(int)height of block.");
    AddAttr<int>("block_width", "(int)width of block.");
    AddAttr<int>("stride_height", "(int)height of stride.");
    AddAttr<int>("stride_width", "(int)width of stride.");
    AddAttr<int>("padding_height", "(int)height of padding.");
    AddAttr<int>("padding_width", "(int)width of padding.");
G
gongweibao 已提交
75
    AddComment(R"DOC(
76
Convert feature map to minibatch matrix.
G
gongweibao 已提交
77
- matirx height is: output_height * output_width
W
wanghaoshuang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
- matrix width is: block_height * block_width * channels

output_height =
    1 + (2 * padding_height + img_height - block_height + stride_height - 1) /
            stride_height;
output_width =
    1 + (2 * padding_width + img_width - block_width + stride_width - 1) /
            stride_width;

After expanding, The number of time steps are output_height * output_width
and the dimension of each time step is block_height * block_width * channels.
This op can be used after convolution neural network, and before recurrent neural network.

Given:

x = [[[[ 6.  2.  1.]
       [ 8.  3.  5.]
       [ 0.  2.  6.]]

      [[ 2.  4.  4.]
       [ 6.  3.  0.]
       [ 6.  4.  7.]]]

     [[[ 6.  7.  1.]
       [ 5.  7.  9.]
       [ 2.  4.  8.]]

      [[ 1.  2.  1.]
       [ 1.  3.  5.]
       [ 9.  0.  8.]]]]
x.dims = {2, 2, 3, 3}

And:

block_height = 2
block_width = 2
stride_height = 1
stride_width = 1
padding_height = 0
padding_width = 0

Then:

output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
               [ 2.  1.  3.  5.  4.  4.  3.  0.]
               [ 8.  3.  0.  2.  6.  3.  6.  4.]
               [ 3.  5.  2.  6.  3.  0.  4.  7.]
               [ 6.  7.  5.  7.  1.  2.  1.  3.]
               [ 7.  1.  7.  9.  2.  1.  3.  5.]
               [ 5.  7.  2.  4.  1.  3.  9.  0.]
               [ 7.  9.  4.  8.  3.  5.  0.  8.]]
output.dims = {8, 9}
output.lod = [[0, 4, 8]]

G
gongweibao 已提交
132 133 134 135
)DOC");
  }
};

136
class Im2SequenceGradOp : public framework::OperatorWithKernel {
G
gongweibao 已提交
137 138 139 140
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
G
add gpu  
gongweibao 已提交
141 142 143
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
G
gongweibao 已提交
144 145
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
G
add gpu  
gongweibao 已提交
146
  }
G
gongweibao 已提交
147 148 149 150 151 152
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
153 154
REGISTER_OP(im2sequence, ops::Im2SequenceOp, ops::Im2SequenceOpMaker,
            im2sequence_grad, ops::Im2SequenceGradOp);
G
gongweibao 已提交
155
REGISTER_OP_CPU_KERNEL(
156 157
    im2sequence,
    ops::Im2SequenceKernel<paddle::platform::CPUDeviceContext, float>);
G
gongweibao 已提交
158
REGISTER_OP_CPU_KERNEL(
159 160
    im2sequence_grad,
    ops::Im2SequenceGradKernel<paddle::platform::CPUDeviceContext, float>);