analyzer_mm_dnn_tester.cc 7.5 KB
Newer Older
T
Tao Luo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

struct DataRecord {
21
  std::vector<std::vector<int64_t>> query, title;
T
Tao Luo 已提交
22
  std::vector<size_t> lod1, lod2;
23
  size_t batch_iter{0}, batch_size{1}, num_samples;  // total number of samples
T
Tao Luo 已提交
24 25 26 27 28 29 30 31 32
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
33 34 35
    if (batch_end <= query.size()) {
      GetInputPerBatch(query, &data.query, &data.lod1, batch_iter, batch_end);
      GetInputPerBatch(title, &data.title, &data.lod2, batch_iter, batch_end);
T
Tao Luo 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, '\t', &data);
      // load query data
      std::vector<int64_t> query_data;
      split_to_int64(data[0], ' ', &query_data);
      // load title data
      std::vector<int64_t> title_data;
      split_to_int64(data[1], ' ', &title_data);
54 55
      query.push_back(std::move(query_data));
      title.push_back(std::move(title_data));
T
Tao Luo 已提交
56 57 58 59 60 61 62 63 64 65 66 67
    }
    num_samples = num_lines;
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_query_tensor, lod_title_tensor;
  lod_query_tensor.name = "left";
  lod_title_tensor.name = "right";
  auto one_batch = data->NextBatch();
  // assign data
68 69
  TensorAssignData<int64_t>(&lod_query_tensor, one_batch.query, one_batch.lod1);
  TensorAssignData<int64_t>(&lod_title_tensor, one_batch.title, one_batch.lod2);
T
Tao Luo 已提交
70 71 72 73 74 75 76
  // Set inputs.
  input_slots->assign({lod_query_tensor, lod_title_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::INT64;
  }
}

77
void SetConfig(AnalysisConfig *cfg) {
78 79 80 81
  cfg->SetModel(FLAGS_infer_model);
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
T
Tao Luo 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}

// Easy for profiling independently.
96
void profile(bool use_mkldnn = false) {
97
  AnalysisConfig cfg;
T
Tao Luo 已提交
98
  SetConfig(&cfg);
99
  std::vector<std::vector<PaddleTensor>> outputs;
T
Tao Luo 已提交
100

101 102
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
103
    cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
104 105
  }

T
Tao Luo 已提交
106 107 108 109 110 111
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
112 113 114
    PADDLE_ENFORCE_GT(outputs.size(), 0);
    PADDLE_ENFORCE_EQ(outputs.back().size(), 2UL);
    for (auto &output : outputs.back()) {
T
Tao Luo 已提交
115 116 117 118 119 120 121 122 123 124 125 126
      size_t size = GetSize(output);
      PADDLE_ENFORCE_GT(size, 0);
      float *result = static_cast<float *>(output.data.data());
      // output is probability, which is in (-1, 1).
      for (size_t i = 0; i < size; i++) {
        EXPECT_GT(result[i], -1);
        EXPECT_LT(result[i], 1);
      }
    }
  }
}

127 128 129 130 131
TEST(Analyzer_MM_DNN, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_MM_DNN, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif

T
Tao Luo 已提交
132 133
// Check the fuse status
TEST(Analyzer_MM_DNN, fuse_statis) {
134
  AnalysisConfig cfg;
T
Tao Luo 已提交
135 136 137 138 139 140 141 142 143
  SetConfig(&cfg);

  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
}

// Compare result of NativeConfig and AnalysisConfig
144
void compare(bool use_mkldnn = false) {
145
  AnalysisConfig cfg;
T
Tao Luo 已提交
146 147
  SetConfig(&cfg);

148 149
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
150
    cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
151 152
  }

T
Tao Luo 已提交
153 154 155 156 157 158
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

159 160 161 162 163
TEST(Analyzer_MM_DNN, compare) { compare(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_MM_DNN, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif

T
Tao Luo 已提交
164 165 166 167 168 169 170 171 172 173 174
// Compare Deterministic result
TEST(Analyzer_MM_DNN, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
#ifdef PADDLE_WITH_MKLDNN
void TestMkldnnCacheClear(int mkldnn_input_shape_cache_capacity) {
  AnalysisConfig config;
  SetConfig(&config);
  config.EnableMKLDNN();
  // TODO(luotao): explicit following settings will be deprecated after enhance
  // config.EnableMKLDNN() interface.
  if (mkldnn_input_shape_cache_capacity > 0) {
    platform::set_cur_mkldnn_session_id(
        platform::kMKLDNNSessionID_CacheClearing);
    platform::set_cur_input_shape_cache_capacity(
        mkldnn_input_shape_cache_capacity);
  }

  std::vector<PaddleTensor> input, output;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);

  int sample_num = 10;
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);

  auto &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx = dynamic_cast<platform::MKLDNNDeviceContext *>(
      pool.Get(platform::CPUPlace()));
  for (int i = 0; i < sample_num; i++) {
    PrepareInputs(&input, &data, FLAGS_batch_size);
    if (mkldnn_input_shape_cache_capacity > 0) {
      std::stringstream ss;
      for (size_t i = 0; i < input.size(); i++) {
        for (size_t j = 0; j < input[i].shape.size(); ++j) {
          ss << input[i].shape[j] << "-";
        }
      }
      // TODO(luotao): explicit following settings will be deprecated after
      // enhance config.EnableMKLDNN() interface.
      platform::set_cur_input_shape_str(ss.str());
    }
    predictor->Run(input, &output, 1);
  }
  if (mkldnn_input_shape_cache_capacity > 0) {
    PADDLE_ENFORCE_EQ(dev_ctx->GetShapeBlobSize(),
                      mkldnn_input_shape_cache_capacity);
  } else {
    PADDLE_ENFORCE_EQ(dev_ctx->GetShapeBlobSize(), 1UL);
  }
  dev_ctx->ResetBlobMap();
}

TEST(Analyzer_MM_DNN, mkldnn_cache_clear) {
  // 0 means do not use cache clear strategy.
  TestMkldnnCacheClear(0);
  // 4 means use cache clear strategy, and the
  // mkldnn_input_shape_cache_capacity is 4.
  TestMkldnnCacheClear(4);
}
#endif

T
Tao Luo 已提交
231 232
}  // namespace inference
}  // namespace paddle