log_loss_op.cc 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
K
kavyasrinet 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
16
#include "paddle/fluid/framework/infershape_utils.h"
17
#include "paddle/fluid/framework/op_registry.h"
18 19
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/binary.h"
K
kavyasrinet 已提交
20 21 22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

class LogLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
};

template <typename AttrType>
class LogLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
32
  void Make() override {
K
kavyasrinet 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    AddInput("Predicted",
             "The input value (Predicted) of Log loss op."
             "Predicted is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Labels",
             "The target value (Labels) of Log loss op."
             "Labels is a 2-D tensor with shape [batch_size, 1].");
    AddOutput("Loss",
              "The output tensor with shape [batch_size, 1] "
              "which represents the log loss.");
    AddAttr<AttrType>("epsilon", "Epsilon in log loss.");
    AddComment(R"DOC(
LogLoss Operator.

Log loss is a loss function used for binary classification. Log Loss quantifies
the accuracy of a classifier by penalising false classifications. Minimising the
Log Loss is equivalent to maximising the accuracy of the classifier. We define
Predicted as the values predicted by our model and Labels as the target ground
truth value. Log loss can evaluate how close the predicted values are to the
target. The shapes of Predicted and Labels are both [batch_size, 1].
The equation is:

$$
Loss = - Labels * log(Predicted + \epsilon) -
        (1 - Labels) * log(1 - Predicted + \epsilon)
$$

)DOC");
  }
};

class LogLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
68 69 70 71 72 73 74 75
    OP_INOUT_CHECK(ctx->HasInput("Predicted"), "Input", "Predicted",
                   "LogLossGrad");
    OP_INOUT_CHECK(ctx->HasInput("Labels"), "Input", "Labels", "LogLossGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Loss")), "Input",
                   framework::GradVarName("Loss"), "LogLossGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Predicted")),
                   "Output", framework::GradVarName("Predicted"),
                   "LogLossGrad");
K
kavyasrinet 已提交
76 77 78

    auto pred_dims = ctx->GetInputDim("Predicted");
    auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));
79 80 81 82 83 84 85 86
    PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims,
                      platform::errors::InvalidArgument(
                          "The dimensions of loss_grad must be equal to the "
                          "dimensions of Predicted,"
                          "But received dimensions of loss_grad is [%s], "
                          "received Predicted is "
                          "[%s]",
                          loss_grad_dims, pred_dims));
K
kavyasrinet 已提交
87 88 89 90 91 92

    auto pred_grad_name = framework::GradVarName("Predicted");
    ctx->SetOutputDim(pred_grad_name, pred_dims);
  }
};

H
hong 已提交
93 94
template <typename T>
class LogLossGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
95
 public:
H
hong 已提交
96
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
97 98

 protected:
99
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
100
    op->SetType("log_loss_grad");
H
hong 已提交
101 102 103 104 105 106
    op->SetInput("Predicted", this->Input("Predicted"));
    op->SetInput("Labels", this->Input("Labels"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
    op->SetOutput(framework::GradVarName("Predicted"),
                  this->InputGrad("Predicted"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
107 108 109
  }
};

K
kavyasrinet 已提交
110 111 112 113
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
114 115
DECLARE_INFER_SHAPE_FUNCTOR(log_loss, LogLossInferShapeFunctor,
                            PD_INFER_META(phi::LogLossInferMeta));
Y
Yang Yang 已提交
116
REGISTER_OPERATOR(log_loss, ops::LogLossOp, ops::LogLossOpMaker<float>,
H
hong 已提交
117
                  ops::LogLossGradMaker<paddle::framework::OpDesc>,
118 119
                  ops::LogLossGradMaker<paddle::imperative::OpBase>,
                  LogLossInferShapeFunctor);
120
REGISTER_OPERATOR(log_loss_grad, ops::LogLossGradOp);