FunctionTest.cpp 3.6 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Function.h"
#include <gtest/gtest.h>
17
#include "paddle/math/SparseMatrix.h"
H
hedaoyuan 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle {

template <DeviceType DType>
void FunctionApi(typename Tensor<real, DType>::Matrix& output,
                 const typename Tensor<real, DType>::Matrix& input);

template <>
void FunctionApi<DEVICE_TYPE_CPU>(CpuMatrix& output, const CpuMatrix& input) {
  EXPECT_EQ(output.getHeight(), 100);
  EXPECT_EQ(output.getWidth(), 200);
}

template <>
void FunctionApi<DEVICE_TYPE_GPU>(GpuMatrix& output, const GpuMatrix& input) {
  EXPECT_EQ(output.getHeight(), 10);
  EXPECT_EQ(output.getWidth(), 20);
}

template <DeviceType DType>
void Function(const BufferArgs& arguments) {
39
  const auto input = arguments[0].matrix<DType>();
H
hedaoyuan 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  auto output = arguments[1].matrix<DType>();
  FunctionApi<DType>(output, input);
}

TEST(Function, BufferArgs) {
  CpuMatrix cpuInput = CpuMatrix(100, 200);
  CpuMatrix cpuOutput = CpuMatrix(100, 200);
  BufferArgs cpuArgments;
  cpuArgments.addArg(cpuInput);
  cpuArgments.addArg(cpuOutput);
  Function<DEVICE_TYPE_CPU>(cpuArgments);

  GpuMatrix gpuInput = GpuMatrix(10, 20);
  GpuMatrix gpuOutput = GpuMatrix(10, 20);
  BufferArgs gpuArgments;
  gpuArgments.addArg(gpuInput);
  gpuArgments.addArg(gpuOutput);
  Function<DEVICE_TYPE_GPU>(gpuArgments);
}

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
TEST(BufferArgs, asArgument) {
  MatrixPtr matrix = Matrix::create(100, 200);
  VectorPtr vector = Vector::create(100, false);
  CpuSparseMatrix sparse(200, 300, 50);

  // prepare arguments
  BufferArgs argments;
  argments.addArg(*matrix);
  argments.addArg(*vector);
  argments.addArg(sparse);

  // function
  auto function = [=](const BufferArgs& inputs) {
    EXPECT_EQ(inputs.size(), 3);

    // check inputs[0]
    EXPECT_EQ(inputs[0].shape().ndims(), 2);
    EXPECT_EQ(inputs[0].shape()[0], 100);
    EXPECT_EQ(inputs[0].shape()[1], 200);
    EXPECT_EQ(inputs[0].data(), matrix->getData());

    EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getHeight(),
              matrix->getHeight());
    EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getWidth(),
              matrix->getWidth());
    EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getData(), matrix->getData());

    // check inputs[1]
    EXPECT_EQ(inputs[1].shape().ndims(), 1);
    EXPECT_EQ(inputs[1].shape()[0], 100);
    EXPECT_EQ(inputs[1].data(), vector->getData());
    CpuVector inVector = inputs[1].vector<real, DEVICE_TYPE_CPU>();
    EXPECT_EQ(inVector.getSize(), vector->getSize());
    EXPECT_EQ(inVector.getData(), vector->getData());

    // check inputs[2]
    EXPECT_EQ(inputs[2].shape().ndims(), 2);
    EXPECT_EQ(inputs[2].shape()[0], 200);
    EXPECT_EQ(inputs[2].shape()[1], 300);
    EXPECT_EQ(inputs[2].data(), sparse.getData());
    // CHECK_EQ(inputs[2].sparse().nnz(), 50);
    // CHECK_EQ(inputs[2].sparse().dataFormat(), SPARSE_CSR_FORMAT);
    // CHECK_EQ(inputs[2].sparse().dataType(), SPARSE_FLOAT_VALUE);
    EXPECT_EQ(inputs[2].sparse().getRowBuf(), sparse.getRows());
    EXPECT_EQ(inputs[2].sparse().getColBuf(), sparse.getCols());
  };

  // call function
  function(argments);
}

H
hedaoyuan 已提交
111
}  // namespace paddle