lenet.py 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

L
LielinJiang 已提交
15 16
import paddle
import paddle.nn as nn
17

18
__all__ = []
19 20


L
LielinJiang 已提交
21
class LeNet(nn.Layer):
22
    """LeNet model from
23
    `"Gradient-based learning applied to document recognition" <https://ieeexplore.ieee.org/document/726791>`_.
24 25

    Args:
26
        num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer 
27 28
                            will not be defined. Default: 10.

29 30 31
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of LeNet model.

32 33 34
    Examples:
        .. code-block:: python

35
            import paddle
36
            from paddle.vision.models import LeNet
37 38

            model = LeNet()
39 40 41 42 43 44

            x = paddle.rand([1, 1, 28, 28])
            out = model(x)

            print(out.shape)
            # [1, 10]
45 46
    """

L
LielinJiang 已提交
47
    def __init__(self, num_classes=10):
48 49
        super(LeNet, self).__init__()
        self.num_classes = num_classes
50 51 52 53
        self.features = nn.Sequential(nn.Conv2D(1, 6, 3, stride=1, padding=1),
                                      nn.ReLU(), nn.MaxPool2D(2, 2),
                                      nn.Conv2D(6, 16, 5, stride=1, padding=0),
                                      nn.ReLU(), nn.MaxPool2D(2, 2))
54 55

        if num_classes > 0:
56 57
            self.fc = nn.Sequential(nn.Linear(400, 120), nn.Linear(120, 84),
                                    nn.Linear(84, num_classes))
58 59 60 61 62

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
L
LielinJiang 已提交
63
            x = paddle.flatten(x, 1)
64 65
            x = self.fc(x)
        return x