tensor_method.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/include/tensor.h"
16

17
#include "paddle/phi/common/int_array.h"
18 19 20
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/tensor_base.h"

21
#include "paddle/phi/api/include/context_pool.h"
22
#include "paddle/phi/api/include/sparse_api.h"
23 24
#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
25
#include "paddle/phi/core/tensor_utils.h"
26
#include "paddle/phi/infermeta/unary.h"
27
// clang-format off
28

29 30 31 32
namespace paddle {
namespace experimental {
// declare cast api
Tensor cast(const Tensor &x, DataType out_dtype);
33
Tensor copy_to(const Tensor &x, const Place &place, bool blocking);
34 35 36 37 38

Tensor Tensor::cast(DataType target_type) const {
  return experimental::cast(*this, target_type);
}

39
Tensor Tensor::copy_to(const Place &place, bool blocking) const {
40
  return experimental::copy_to(*this, place, blocking);
41 42 43
}

template <typename T>
44
Tensor Tensor::copy_to(const Place &target_place) const {
45 46 47 48 49 50
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor's `copy_to` method is deprecated since version "
         "2.3, and will be removed in version 2.4, please use "
         "`copy_to` method without template argument instead. "
         "reason: copying a Tensor to another device does not need "
         "to specify the data type template argument.";
51
  return copy_to(target_place, /*blocking=*/false);
52 53 54
}

template PADDLE_API Tensor
55
Tensor::copy_to<float>(const Place &target_place) const;
56
template PADDLE_API Tensor
57
Tensor::copy_to<double>(const Place &target_place) const;
58
template PADDLE_API Tensor
59
Tensor::copy_to<int64_t>(const Place &target_place) const;
60
template PADDLE_API Tensor
61
Tensor::copy_to<int32_t>(const Place &target_place) const;
62
template PADDLE_API Tensor
63
Tensor::copy_to<uint8_t>(const Place &target_place) const;
64
template PADDLE_API Tensor
65
Tensor::copy_to<int8_t>(const Place &target_place) const;
66
template PADDLE_API Tensor
67
Tensor::copy_to<int16_t>(const Place &target_place) const;
68
template PADDLE_API Tensor
69
Tensor::copy_to<bool>(const Place &target_place) const;
70
template PADDLE_API Tensor
71 72 73 74 75
Tensor::copy_to<phi::dtype::complex<float>>(const Place &target_place) const;
template PADDLE_API Tensor
Tensor::copy_to<phi::dtype::complex<double>>(const Place &target_place) const;
template PADDLE_API Tensor
Tensor::copy_to<phi::dtype::float16>(const Place &target_place) const;
76

77 78 79
void Tensor::copy_(const Tensor &src,
                   const phi::Place &target_place,
                   bool blocking) {
80
  if (!src.initialized()) {
81
    VLOG(8) << "Src is empty, skip copy";
82 83
    return;
  }
84 85 86
  // Prepare copy kernel key and outputs
  auto kernel_key_set = ParseKernelKeyByInputArgs(src);
  KernelType kernel_type = ParseKernelTypeByInputArgs(src);
87
  VLOG(3) << "Deep copy Tensor from " << src.name() << " to " << name();
88
  if (initialized()) {
89 90
    PADDLE_ENFORCE_EQ(dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
91
                      phi::errors::PreconditionNotMet(
92 93 94 95 96 97
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          name(),
                          src.name()));
    PADDLE_ENFORCE_EQ(impl()->type_info().id(),
                      src.impl()->type_info().id(),
J
Jiabin Yang 已提交
98
                      phi::errors::PreconditionNotMet(
99 100 101 102
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          name(),
                          src.name()));
103
    PADDLE_ENFORCE_EQ(target_place,
C
Chen Weihang 已提交
104
                      place(),
J
Jiabin Yang 已提交
105
                      phi::errors::PreconditionNotMet(
106 107 108
                          "Place is different of dst tensor and args %s, which "
                          "current tensor holds %s "
                          "Copy cannot be performed!",
J
Jiabin Yang 已提交
109
                          target_place,
C
Chen Weihang 已提交
110 111 112
                          place()));
    kernel_key_set.backend_set = kernel_key_set.backend_set |
                                 BackendSet(phi::TransToPhiBackend(place()));
113 114 115 116
  } else {
    // Deep Copy AutoGrad info from src to self.
    *autograd_meta_ = *(src.autograd_meta_);
  }
117 118
  kernel_key_set.backend_set = kernel_key_set.backend_set |
                               BackendSet(phi::TransToPhiBackend(target_place));
119
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
120
  auto place = phi::TransToPhiPlace(kernel_key.backend());
121 122
  auto &pool = paddle::experimental::DeviceContextPool::Instance();
  auto *dev_ctx = pool.GetMutable(
123 124
      place.GetType() == target_place.GetType() ? target_place : place);

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  if (kernel_type == KernelType::DENSE_TENSOR_KENREL) {
Z
zyfncg 已提交
144
    SetKernelOutput(this);
145 146 147 148 149
    phi::MetaTensor meta_out(impl_.get());
    phi::UnchangedInferMeta(
        MakeMetaTensor(
            *(std::static_pointer_cast<phi::DenseTensor>(src.impl_))),
        &meta_out);
150 151 152 153 154
    phi::Copy(*dev_ctx,
              (*(std::static_pointer_cast<phi::DenseTensor>(src.impl_))),
              target_place,
              blocking,
              static_cast<phi::DenseTensor *>(impl_.get()));
155
  } else if (kernel_type == KernelType::SELECTED_ROWS_KENREL) {
Z
zyfncg 已提交
156
    SetSelectedRowsKernelOutput(this);
157 158 159 160 161
    phi::MetaTensor meta_out(impl_.get());
    phi::UnchangedInferMeta(
        MakeMetaTensor(
            *(std::static_pointer_cast<phi::SelectedRows>(src.impl_))),
        &meta_out);
162 163 164 165 166
    phi::Copy(*dev_ctx,
              (*(std::static_pointer_cast<phi::SelectedRows>(src.impl_))),
              target_place,
              blocking,
              static_cast<phi::SelectedRows *>(impl_.get()));
167
  } else if (kernel_type == KernelType::SPARSE_COO_KERNEL) {
168
    SetSparseKernelOutput(this, TensorType::SPARSE_COO);
169 170 171 172 173
    phi::MetaTensor meta_out(impl_.get());
    phi::UnchangedInferMeta(
        MakeMetaTensor(
            *(std::static_pointer_cast<phi::SparseCooTensor>(src.impl_))),
        &meta_out);
174 175 176 177 178
    phi::Copy(*dev_ctx,
              (*(std::static_pointer_cast<phi::SparseCooTensor>(src.impl_))),
              target_place,
              blocking,
              static_cast<phi::SparseCooTensor *>(impl_.get()));
179
  } else if (kernel_type == KernelType::SPARSE_CSR_KERNEL) {
180
    SetSparseKernelOutput(this, TensorType::SPARSE_CSR);
181 182 183 184 185
    phi::MetaTensor meta_out(impl_.get());
    phi::UnchangedInferMeta(
        MakeMetaTensor(
            *(std::static_pointer_cast<phi::SparseCsrTensor>(src.impl_))),
        &meta_out);
186 187 188 189 190
    phi::Copy(*dev_ctx,
              (*(std::static_pointer_cast<phi::SparseCsrTensor>(src.impl_))),
              target_place,
              blocking,
              static_cast<phi::SparseCsrTensor *>(impl_.get()));
191
  } else {
J
Jiabin Yang 已提交
192
    PADDLE_THROW(phi::errors::InvalidArgument(
193 194
        "We currently only support dense tensor copy for now and if u need to "
        "copy selected rows please raise a issue."));
195 196 197
  }
}

198 199 200 201 202 203 204 205 206 207 208 209
Tensor Tensor::to_sparse_coo(const int64_t sparse_dim) const {
  return experimental::sparse::to_sparse_coo(*this, sparse_dim);
}

Tensor Tensor::to_sparse_csr() const {
  return experimental::sparse::to_sparse_csr(*this);
}

Tensor Tensor::to_dense() const {
  return experimental::sparse::to_dense(*this);
}

210 211
}  // namespace experimental
}  // namespace paddle