roll_op.cc 2.6 KB
Newer Older
F
feng_shuai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/helper.h"

namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {
/*
Z
zhoutianzi666 已提交
31
 * Roll converter from fluid to tensorRT.
F
feng_shuai 已提交
32 33 34 35
 */
class RollOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
36 37
                  const framework::Scope& scope,
                  bool test_mode) override {
F
feng_shuai 已提交
38 39 40 41 42 43 44
    VLOG(4) << "convert fluid Roll op to tensorrt Slice layer";

    framework::OpDesc op_desc(op, nullptr);
    auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_dims = input->getDimensions();

    std::vector<int64_t> axis =
R
Ruibiao Chen 已提交
45
        PADDLE_GET_CONST(std::vector<int64_t>, op_desc.GetAttr("axis"));
F
feng_shuai 已提交
46
    std::vector<int64_t> shifts =
R
Ruibiao Chen 已提交
47
        PADDLE_GET_CONST(std::vector<int64_t>, op_desc.GetAttr("shifts"));
F
feng_shuai 已提交
48 49 50 51 52 53 54 55

    nvinfer1::Dims start;
    start.nbDims = input_dims.nbDims;
    for (int i = 0; i < start.nbDims; i++) {
      start.d[i] = 0;
    }
    int axis_size = axis.size();
    for (int i = 0; i < axis_size; i++) {
Z
zhoutianzi666 已提交
56 57
      start.d[axis[i]] =
          (input_dims.d[axis[i]] - shifts[i]) % input_dims.d[axis[i]];
F
feng_shuai 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    }

    nvinfer1::Dims stride;
    stride.nbDims = input_dims.nbDims;
    for (int i = 0; i < stride.nbDims; i++) {
      stride.d[i] = 1;
    }

    nvinfer1::Dims size;
    size.nbDims = input_dims.nbDims;
    for (int i = 0; i < size.nbDims; i++) {
      size.d[i] = 1;
    }

    auto output_name = op_desc.Output("Out")[0];

    auto* layer =
        TRT_ENGINE_ADD_LAYER(engine_, Slice, *input, start, size, stride);
Z
zhoutianzi666 已提交
76
    layer->setInput(2, *Shape(input));
F
feng_shuai 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89
#if IS_TRT_VERSION_GE(7000)
    layer->setMode(nvinfer1::SliceMode::kWRAP);
#endif

    RreplenishLayerAndOutput(layer, "roll", {output_name}, test_mode);
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(roll, RollOpConverter);