variable_index.py 28.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core
W
WeiXin 已提交
19
import paddle
20 21 22 23

MAX_INTEGER = 2**31 - 1


W
WeiXin 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def is_list_tuple(index, contain_type):
    def _is_list_tuple(item):
        if not (isinstance(item, (list, tuple)) or type(item) == contain_type):
            return False
        if isinstance(item, (tuple, list)):
            for s in item:
                if not _is_list_tuple(s):
                    return False
        return True

    if not isinstance(index, (tuple, list)):
        return False
    for s in index:
        if not _is_list_tuple(s):
            return False
    return True


def is_one_dim_list(index, contain_type):
    if isinstance(index, list):
        for i in index:
            if not isinstance(i, contain_type):
                return False
    else:
        return False
    return True


def get_list_index_shape(var_dims, index_dims):
    var_dims_size = len(var_dims)
    index_dims_size = len(index_dims)

    out_dims_size = var_dims_size - index_dims[0] + index_dims_size - 1

    out_dims_shape = [1] * out_dims_size

60
    out_dims_shape[: index_dims_size - 1] = index_dims[1:]
W
WeiXin 已提交
61

62
    out_dims_shape[index_dims_size - 1 :] = var_dims[index_dims[0] :]
W
WeiXin 已提交
63 64 65 66 67 68 69
    return out_dims_shape


class SliceInfo:
    def __init__(self):
        self.pre_shape = None
        self.indexes = []
W
WeiXin 已提交
70
        self.dtype = None
W
WeiXin 已提交
71 72

    def update(self, index):
73
        if is_list_tuple(index, int) or isinstance(
74 75
            index, (paddle.fluid.Variable, np.ndarray)
        ):
W
WeiXin 已提交
76 77 78 79
            # convert index to Tensor
            if not isinstance(index, paddle.fluid.Variable):
                index = paddle.assign(index)

W
WeiXin 已提交
80 81 82 83 84
            if self.dtype is None:
                self.dtype = index.dtype
            else:
                if index.dtype != self.dtype:
                    raise IndexError(
85 86 87 88
                        "Data type of Tensor/List index should be same. The current data type is {}, but the previous data type is {}.".format(
                            index.dtype, self.dtype
                        )
                    )
W
WeiXin 已提交
89

W
WeiXin 已提交
90 91 92 93 94 95
            self.indexes.append(index)

            if self.pre_shape is None:
                self.pre_shape = index.shape
            else:
                if self.pre_shape != index.shape:
96
                    # broadcast
97 98 99
                    cur_shape = paddle.broadcast_shape(
                        self.pre_shape, index.shape
                    )
W
WeiXin 已提交
100
                    for i in range(len(self.indexes)):
101
                        self.indexes[i] = paddle.broadcast_to(
102 103
                            self.indexes[i], cur_shape
                        )
W
WeiXin 已提交
104 105 106
                self.pre_shape = self.indexes[-1].shape
        else:
            raise ValueError(
107 108 109 110
                "Index should be list/tuple of int or Tensor, but received {}.".format(
                    index
                )
            )
W
WeiXin 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    def shape_stride(self, shape):
        s = [1] * len(shape)
        for i in range(len(shape) - 2, -1, -1):
            s[i] = shape[i + 1] * s[i + 1]

        return s

    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def get_offset_stride(self, tensor_shape):
        for index in self.indexes:
            if not isinstance(index, paddle.fluid.Variable):
                raise ValueError(
                    "only support list/tensor index, but received {}.".format(
127 128 129
                        type(index)
                    )
                )
W
WeiXin 已提交
130 131 132

        if len(self.indexes) <= len(tensor_shape) or len(self.indexes) == 1:
            shape = paddle.stack(self.indexes)
133 134 135
            axes = list(range(1, len(self.pre_shape) + 1)) + [
                0,
            ]
W
WeiXin 已提交
136 137 138

        else:
            raise ValueError(
139 140 141 142
                "too many indices for tensor: tensor is {}-dimensional, but {} were indexed".format(
                    len(tensor_shape), self.pre_shape[0]
                )
            )
W
WeiXin 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        shape_transpose = paddle.transpose(shape, axes)
        return shape_transpose

    def get_item(self, tensor):
        shape_transpose = self.get_offset_stride(tensor.shape)
        index = paddle.assign(shape_transpose)
        return paddle.gather_nd(tensor, index)

    def set_item(self, tensor_origin, value):

        if not isinstance(value, paddle.fluid.Variable):
            value = paddle.assign(value)
        tensor_type = None

        if tensor_origin.dtype in [
159 160
            core.VarDesc.VarType.FP32,
            core.VarDesc.VarType.FP64,
W
WeiXin 已提交
161 162 163 164 165 166 167 168 169 170 171 172
        ]:
            tensor = tensor_origin
        else:
            tensor_type = tensor_origin.dtype
            tensor = tensor_origin.astype(core.VarDesc.VarType.FP32)

        if value.dtype != tensor.dtype:
            value = value.astype(tensor.dtype)

        shape_transpose = self.get_offset_stride(tensor_origin.shape)
        index = paddle.assign(shape_transpose)

173 174 175 176 177 178 179
        gather_tensor_shape = get_list_index_shape(
            tensor.shape,
            [
                len(self.indexes),
            ]
            + list(self.indexes[-1].shape),
        )
W
WeiXin 已提交
180

181 182 183
        value_dims_bd = [
            1,
        ] * len(gather_tensor_shape)
184
        value_dims_bd[-len(value.shape) :] = list(value.shape)
W
WeiXin 已提交
185 186

        for i in range(len(gather_tensor_shape)):
187 188 189 190 191 192 193 194 195
            if not (
                value_dims_bd[i] == gather_tensor_shape[i]
                or value_dims_bd[i] == 1
            ):
                raise ValueError(
                    "{} can not broadcast into {}".format(
                        value.shape, gather_tensor_shape
                    )
                )
W
WeiXin 已提交
196 197 198

        value_broadcast = paddle.broadcast_to(value, gather_tensor_shape)

199
        value_1d = value_broadcast.reshape(
200 201
            [-1] + gather_tensor_shape[len(index.shape) - 1 :]
        )
W
WeiXin 已提交
202 203 204 205

        index_1d = index.reshape([-1, index.shape[-1]])

        tensor_stride = paddle.assign(
206 207
            self.shape_stride(tensor.shape[: index.shape[-1]])
        )
W
WeiXin 已提交
208 209 210 211 212
        inds = []
        for i in range(index_1d.shape[0]):
            temp = (index_1d[i] * tensor_stride).sum()
            inds.append(temp)
        index_1d = paddle.stack(inds).reshape([-1])
213
        t_reshape = tensor.reshape([-1] + list(tensor.shape[index.shape[-1] :]))
W
WeiXin 已提交
214 215 216 217 218 219 220 221
        out = paddle.scatter(t_reshape, index_1d, value_1d)
        if tensor_type is not None:
            out = out.astype(tensor_type)
        tensor_origin[:] = out.reshape(tensor_origin.shape)

        return tensor_origin


222 223
def replace_ellipsis(var, item):
    from .framework import Variable
224

225 226 227 228 229 230 231 232 233 234
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
W
WeiXin 已提交
235
    item_remove_var = [
236 237
        ele
        for ele in item
238
        if not isinstance(ele, (Variable, np.ndarray)) and ele is not None
W
WeiXin 已提交
239
    ]
240 241 242 243 244 245 246 247 248 249 250
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
251 252 253
        item[ell_idx : ell_idx + 1] = [slice(None)] * (
            len(var.shape) - len(item) + item.count(None) + 1
        )
254 255 256 257

    return item


W
WeiXin 已提交
258 259 260 261 262 263 264 265 266 267
def replace_ndarray(item):
    new_item = []
    for slice_item in item:
        if isinstance(slice_item, np.ndarray):
            new_item.append(paddle.assign(slice_item))
        else:
            new_item.append(slice_item)
    return new_item


268 269 270 271 272 273 274 275 276 277 278
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


279 280
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
281

282 283 284 285 286 287 288 289
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
        if len(ele.shape) == 1 and ele.shape[0] == 1:
            return True
    return False


290 291
def is_bool_tensor(ele):
    from .framework import Variable
292

293 294 295 296 297
    if isinstance(ele, Variable) and ele.dtype == paddle.bool:
        return True
    return False


298 299 300 301 302
def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable
    from .layers import utils

    if utils._contain_var(attr):
303 304 305
        inputs[tensor_attr_name] = utils._convert_to_tensor_list(
            attr, dtype="int64"
        )
306 307 308 309 310 311 312 313 314 315
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


316
# the item is a tensor of bool
317 318
def get_value_for_bool_tensor(var, item):
    if len(item.shape) > len(var.shape):
319 320 321 322 323
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
324 325 326
    for i, dim_len in enumerate(item.shape):
        if dim_len != var.shape[i]:
            raise IndexError(
327 328 329 330 331
                "The dimension of bool index doesn't match indexed array along "
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
332 333 334 335 336 337 338 339 340 341 342 343 344 345

    def idx_not_empty(var, item):
        from .layers.nn import where
        from ..tensor import gather_nd

        bool_2_idx = where(item == True)
        return gather_nd(var, bool_2_idx)

    def idx_empty(var):
        var_shape = list(var.shape)
        var_shape[0] = 0
        return paddle.empty(var_shape, dtype=var.dtype)

    from .layers.control_flow import cond
346 347 348 349

    return cond(
        item.any(), lambda: idx_not_empty(var, item), lambda: idx_empty(var)
    )
350 351


352 353 354 355 356 357 358 359 360 361
def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
362
    from .framework import default_main_program, Variable
363

W
WeiXin 已提交
364 365 366
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
367 368

    if not isinstance(item, tuple):
369
        item = (item,)
370 371 372 373 374 375

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
376
    reverse_axes = []
377 378

    use_strided_slice = False
W
WeiXin 已提交
379
    item = replace_ndarray(item)
380
    item = replace_ellipsis(var, item)
381
    item, none_axes = replace_none(item)
W
WeiXin 已提交
382
    slice_info = SliceInfo()
383 384 385 386
    is_tensor_array = (
        hasattr(var, "desc")
        and var.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
    )
387 388

    for dim, slice_item in enumerate(item):
389 390 391 392 393 394 395 396
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
            if (
                isinstance(slice_item, int)
                and var.shape[dim] is not None
                and var.shape[dim] >= 0
                and slice_item >= var.shape[dim]
397
                and not is_tensor_array
398
            ):
399 400 401 402 403 404 405 406
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
407 408
                    % (slice_item, dim, dim, var.shape[dim])
                )
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

424 425 426
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
427
                if var.shape[dim] != -1 and (
428
                    paddle.fluid.framework._non_static_mode()
429
                    or not is_tensor_array
430
                ):
431 432 433
                    end = var.shape[dim] if step > 0 else -1
                else:
                    end = MAX_INTEGER if step > 0 else -1
434

435
        elif isinstance(slice_item, list):
Z
zyfncg 已提交
436
            all_bool = True
W
WeiXin 已提交
437 438 439 440 441

            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

442
            for i in slice_item:
Z
zyfncg 已提交
443 444 445
                if type(i) is int:
                    all_bool = False
                elif not isinstance(i, bool):
446 447
                    raise TypeError("Only support int or bool in index list.")

448 449
            if len(item) != 1:
                raise IndexError(
450 451 452 453
                    "When index contains a list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
454 455 456 457
            new_slice_item = []
            if all_bool:
                if len(slice_item) != var.shape[0]:
                    raise IndexError(
458 459 460 461 462
                        "The dimension of bool index doesn't match indexed array along "
                        "dimension 0, the target dimension is {}, but received {}.".format(
                            var.shape[0], len(slice_item)
                        )
                    )
463 464 465 466
                for idx, ele in enumerate(slice_item):
                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item
Z
zyfncg 已提交
467 468 469 470 471 472 473 474 475
            else:
                for idx, ele in enumerate(slice_item):
                    if type(ele) is int:
                        new_slice_item.append(ele)
                    elif ele is True:
                        new_slice_item.append(1)
                    else:
                        new_slice_item.append(0)
                slice_item = new_slice_item
476

477 478 479
            from .layers import assign
            from ..tensor import index_select

480
            idx = assign(np.array(slice_item).astype("int32"))
481 482
            return index_select(var, index=idx, axis=0)

W
wanghuancoder 已提交
483
        elif isinstance(slice_item, (Variable, core.eager.Tensor)):
W
WeiXin 已提交
484
            if len(item) == 1:
485

486
                from ..tensor import index_select
Z
zyfncg 已提交
487

W
WeiXin 已提交
488
                if slice_item.dtype == paddle.bool:
489
                    return get_value_for_bool_tensor(var, slice_item)
W
WeiXin 已提交
490 491 492 493 494 495 496 497 498
                else:
                    if len(slice_item.shape) == 1:
                        return index_select(var, index=slice_item, axis=0)
                    else:
                        slice_info.update(slice_item)
                        continue
            else:
                slice_info.update(slice_item)
                continue
499

500 501
        else:
            raise IndexError(
502 503 504 505
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    slice_item
                )
            )
506 507 508 509 510 511 512

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

W
WeiXin 已提交
513 514 515
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
516 517 518 519
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
520 521
        return slice_info.get_item(var)

522 523 524 525 526
    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
527
        'decrease_axis': decrease_axes,
528 529 530 531 532 533 534
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
535 536 537
    deal_attrs(
        attrs, steps, "strides", "StridesTensorList", inputs, infer_flags
    )
538 539 540 541 542
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        op_type = "strided_slice" if use_strided_slice else "slice"
543 544 545 546 547 548 549 550 551
        if paddle.fluid.framework.in_dygraph_mode() and op_type == "slice":
            if "StartsTensorList" in inputs.keys():
                st = inputs['StartsTensorList']
            else:
                st = attrs['starts']
            if "EndsTensorList" in inputs.keys():
                end = inputs['EndsTensorList']
            else:
                end = attrs['ends']
552 553 554
            out = paddle._C_ops.slice(
                var, axes, st, end, attrs['infer_flags'], attrs['decrease_axis']
            )
555 556 557 558
        else:
            target_block = default_main_program().current_block()

            slice_out_var = target_block.create_var(
559 560 561 562 563 564 565 566 567 568 569
                name=unique_name.generate_with_ignorable_key(
                    var.name + "_" + op_type
                ),
                dtype=var.dtype,
            )
            target_block.append_op(
                type=op_type,
                inputs=inputs,
                outputs={'Out': [slice_out_var]},
                attrs=attrs,
            )
570
            out = slice_out_var
571

572
    if len(reverse_axes) > 0:
573
        from .layers.tensor import reverse
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        out = reverse(out, axis=reverse_axes)

    # Deal with cases when all axes are decreased.
    # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
    # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
    # For example:
    # # x.shape: (2,3,4)
    # out = x[0, 1, 1, None] # out.shape : (1)
    if len(decrease_axes) == len(var.shape):
        none_axes = none_axes[1:]

    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        # Deal with cases when all axes are decreased.
        # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
        # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 1, 1, None] # out.shape : (1)

        from ..tensor import unsqueeze
604

605
        out = unsqueeze(out, axis=none_axes)
606 607 608 609

    return out


610
def _setitem_for_tensor_array(var, item, value):
611 612 613 614 615 616 617
    """branches for tensor array setitem operation.
    A item can be a:
    (1) int/Variable, which is a simple number/variable such as [1], [-2]
    (2) Slice, which is represented by bounds such as [2:-1]
    (3) Tuple, which includes the above two cases such as [2:-1, 1]
    If item is case (1), we perform paddle.tensor.array_write,
    in other cases, we raise a NotImplementedError.
618 619 620
    """
    from ..framework import LayerHelper, core, _non_static_mode
    from .framework import Variable
621 622 623

    assert (
        not _non_static_mode()
624 625
    ), "setitem for tensor_array must be called in static graph mode."
    if isinstance(item, (Variable, int)):
626 627 628
        from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import (
            to_static_variable,
        )
629 630
        from paddle import cast
        from paddle.tensor import array_write
631

632 633 634 635 636
        item = paddle.cast(to_static_variable(item), dtype='int64')
        value = to_static_variable(value)
        array_write(x=value, i=item, array=var)
    else:
        raise NotImplementedError(
637 638 639 640
            "Only support __setitem__ by Int/Variable in tensor_array, but gets {}".format(
                type(item)
            )
        )
641 642


643 644
def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable
645
    from paddle.fluid import core
646

647 648
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        return _setitem_for_tensor_array(var, item, value)
649 650

    inputs = {'Input': var}
W
WeiXin 已提交
651 652 653
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
654 655
    # 1. Parse item
    if not isinstance(item, tuple):
656
        item = (item,)
657 658 659 660 661 662 663

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

W
WeiXin 已提交
664
    item = replace_ndarray(item)
665
    item = replace_ellipsis(var, item)
666
    item, none_axes = replace_none(item)
W
WeiXin 已提交
667
    slice_info = SliceInfo()
Z
zyfncg 已提交
668 669
    dim = 0
    for _, slice_item in enumerate(item):
670 671 672
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
673 674 675 676 677 678 679 680 681 682 683
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
684
                dim += 1
685 686 687 688 689 690 691
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
692 693
                    "but received step is {}.".format(step)
                )
694 695 696 697 698 699 700 701 702 703 704 705

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
Z
zyfncg 已提交
706 707 708 709 710 711 712
        elif isinstance(slice_item, list):
            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

            for i in slice_item:
                if not isinstance(i, bool):
713 714 715
                    raise TypeError(
                        "Doesn't support {} in index list.".format(type(i))
                    )
Z
zyfncg 已提交
716 717 718

            if len(item) != 1:
                raise IndexError(
719 720 721 722
                    "When index contains a bool list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
723 724

            from .layers import assign
725

Z
zyfncg 已提交
726 727 728 729 730 731 732
            idx_tensor = assign(slice_item)
            return set_value_for_bool_tensor(var, idx_tensor, value)

        elif isinstance(slice_item, Variable):
            if slice_item.dtype == core.VarDesc.VarType.BOOL:
                if len(item) != 1:
                    raise IndexError(
733 734 735 736
                        "When index contains a bool tensor, its length must be 1, but received {}.".format(
                            len(item)
                        )
                    )
Z
zyfncg 已提交
737 738 739 740
                return set_value_for_bool_tensor(var, slice_item, value)
            else:
                slice_info.update(slice_item)
                continue
741 742
        else:
            raise IndexError(
Z
zyfncg 已提交
743
                "Valid index accept int, slice, ellipsis, None, list of bool, Variable, "
744 745
                "but received {}.".format(slice_item)
            )
746 747 748 749 750 751

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
752
        dim += 1
W
WeiXin 已提交
753 754 755
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
756 757 758 759
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
760
        return slice_info.set_item(var, value)
761 762 763 764 765
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
766
        'decrease_axes': decrease_axes,
767
        'none_axes': none_axes,
768 769 770
    }

    from .layers import utils
771

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    if utils._contain_var(starts):
        inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
        del attrs['starts']
    if utils._contain_var(ends):
        inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
        del attrs['ends']
    if utils._contain_var(steps):
        inputs['StepsTensorList'] = utils._convert_to_tensor_list(steps)
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
787

788 789 790 791 792 793 794 795 796
    #  2.1 value is an integer of float
    if isinstance(value, (int, float)):
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
797
            values = [int(v) for v in value.flat]
798 799 800 801 802 803 804 805 806 807 808 809
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.FP64:
            value_name = "fp64_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in value.flat]
810 811 812
        elif dtype == core.VarDesc.VarType.FP16:
            value_name = "fp16_values"
            values = [float(v) for v in value.flat]
813 814 815
        else:
            raise TypeError(
                "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
816
                "the data type of the paddle.Tensor must be bool, float32, int32, int64 or float16, but "
817 818
                "received %s." % convert_dtype(dtype)
            )
819 820 821
        attrs[value_name] = values
        attrs["shape"] = shape

W
wanghuancoder 已提交
822
    elif isinstance(value, (Variable, core.eager.Tensor)):
823 824 825 826 827
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
828 829 830
                type(value)
            )
        )
831

832
    if paddle.fluid.framework._non_static_mode():
Z
zyfncg 已提交
833 834
        var._bump_inplace_version()

835
    cur_block = default_main_program().current_block()
836 837 838 839 840 841 842
    cur_block.append_op(
        type="set_value",
        inputs=inputs,
        outputs={'Out': var},
        attrs=attrs,
        inplace_map={"Input": "Out"},
    )
843 844

    return var
Z
zyfncg 已提交
845 846


847
# the item is a tensor of bool
Z
zyfncg 已提交
848 849
def set_value_for_bool_tensor(var, item, value):
    if len(item.shape) > len(var.shape):
850 851 852 853 854
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
Z
zyfncg 已提交
855 856 857 858
    for i, dim_len in enumerate(item.shape):
        if dim_len != var.shape[i]:
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "
859 860 861 862
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
Z
zyfncg 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

    def idx_not_empty(var, item, value):
        from .framework import Variable
        from .layers import assign
        from .layers.nn import where
        from ..tensor import gather_nd, scatter_nd_add

        if not isinstance(value, Variable):
            value = assign(value).cast(var.dtype)

        idx = where(item)
        gather_val = gather_nd(var, idx)
        gather_val_new = value - gather_val
        out = scatter_nd_add(var, idx, gather_val_new)
        var[:] = out

    from .layers.control_flow import cond
880

Z
zyfncg 已提交
881 882 883 884
    # If all the bool index is False, just do nothing
    cond(item.any(), lambda: idx_not_empty(var, item, value))

    return var