test_getitem.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

import paddle
20
from paddle.base.variable_index import _getitem_static
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131


class TestGetitemInDygraph(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def test_combined_index_1(self):
        # int tensor + slice (without decreasing axes)
        np_data = np.random.randn(3, 4, 5, 6)
        np_res = np_data[[0, 1], :, [1, 2]]
        x = paddle.to_tensor(np_data)
        y = x[[0, 1], :, [1, 2]]

        np.testing.assert_allclose(y.numpy(), np_res)

    def test_combined_index_2(self):
        # int tensor + slice (with decreasing axes)
        np_data = np.random.randn(3, 4, 5, 6)
        x = paddle.to_tensor(np_data)

        np_res = np_data[:, 1, [1, 2], 0]
        y = x[:, 1, [1, 2], 0]

        np.testing.assert_allclose(y.numpy(), np_res)

    def test_combined_index_3(self):
        # multiple int tensors, with one int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[[1, 0], :, [1, 4], 1:5:2, 4]

        x = paddle.to_tensor(np_data)
        y = x[[1, 0], :, [1, 4], 1:5:2, 4]

        np.testing.assert_allclose(y.numpy(), np_res)

    def test_combined_index_4(self):
        # multiple not adjacent int tensors, with no int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[:, [1, 0], 0:4:2, [2, 3], 4]
        x = paddle.to_tensor(np_data)
        y = x[:, [1, 0], 0:4:2, [2, 3], 4]

        np.testing.assert_allclose(y.numpy(), np_res)

    def test_combined_index_5(self):
        # multiple adjacent int tensors, with no int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[::2, [1, 0], [2, 3], 0:4:2]
        x = paddle.to_tensor(np_data)
        y = x[::2, [1, 0], [2, 3], 0:4:2]

        np.testing.assert_allclose(y.numpy(), np_res)

    def test_combined_index_6(self):
        # multiple adjacent and not adjacent int tensors, with no int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[::2, [1, 0], [2, 3], 0:4:2, [4, 6]]
        x = paddle.to_tensor(np_data)
        y = x[::2, [1, 0], [2, 3], 0:4:2, [4, 6]]

        np.testing.assert_allclose(y.numpy(), np_res)

    def test_combined_index_7(self):
        # multiple adjacent and not adjacent int tensors (rank > 1d), with no int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[::2, [[1, 0]], [[2, 3]], 0:4:2, [[4, 6]]]
        x = paddle.to_tensor(np_data)
        y = x[::2, [[1, 0]], [[2, 3]], 0:4:2, [[4, 6]]]

        np.testing.assert_allclose(y.numpy(), np_res)

    def test_combined_index_8(self):
        # multiple adjacent and not adjacent int tensors (rank > 1d), with int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[
            [[1, 0], [0, 1]], [[2, 3], [1, 0]], 0:4:2, [[3, 5], [4, 2]]
        ]
        x = paddle.to_tensor(np_data)
        y = x[[[1, 0], [0, 1]], [[2, 3], [1, 0]], 0:4:2, [[3, 5], [4, 2]]]

        np.testing.assert_allclose(y.numpy(), np_res)

    def test_combined_index_9(self):
        # multiple int tensors, with broadcast.
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[[[1, 0]], [1, 0], 0:4:2, [[3, 5], [4, 2]]]
        x = paddle.to_tensor(np_data)
        y = x[[[1, 0]], [1, 0], 0:4:2, [[3, 5], [4, 2]]]

        np.testing.assert_allclose(y.numpy(), np_res)

    def test_combined_index_10(self):
        # only one bool tensor with basic-index
        np_data = np.random.randn(3, 4, 5, 6)
        np_res = np_data[:, [True, False, True, False], 4]

        x = paddle.to_tensor(np_data)
        y = x[:, [True, False, True, False], 4]

        np.testing.assert_allclose(y.numpy(), np_res)

    def test_combined_index_11(self):
        # only one bool tensor with all False
        np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
        np_res = np_data[:, [False, False, False, False], 4]

        x = paddle.to_tensor(np_data)
        y = x[:, [False, False, False, False], 4]

        np.testing.assert_allclose(y.numpy(), np_res)

J
JYChen 已提交
132 133 134 135 136 137 138 139 140
    def test_index_has_range(self):
        np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
        np_res = np_data[:, range(3), 4]

        x = paddle.to_tensor(np_data)
        y = x[:, range(3), 4]

        np.testing.assert_allclose(y.numpy(), np_res)

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

class TestGetitemInStatic(unittest.TestCase):
    def setUp(self):
        paddle.enable_static()
        self.exe = paddle.static.Executor()

    def test_combined_index_1(self):
        # int tensor + slice (without decreasing axes)
        np_data = np.random.randn(3, 4, 5, 6)
        np_res = np_data[[0, 1], :, [1, 2]]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(x, ([0, 1], slice(None, None, None), [1, 2]))
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

    def test_combined_index_2(self):
        # int tensor + slice (with decreasing axes)
        np_data = np.random.randn(3, 4, 5, 6)
        np_res = np_data[:, 1, [1, 2], 0]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(x, (slice(None, None, None), 1, [1, 2], 0))
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

    def test_combined_index_3(self):
        # multiple int tensors, with one int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[[1, 0], :, [1, 4], 1:5:2, 4]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(
                x, ([1, 0], slice(None, None, None), [1, 4], slice(1, 5, 2), 4)
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

    def test_combined_index_4(self):
        # multiple not adjacent int tensors, with no int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[:, [1, 0], 0:4:2, [2, 3], 4]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(
                x, (slice(None, None, None), [1, 0], slice(0, 4, 2), [2, 3], 4)
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

    def test_combined_index_5(self):
        # multiple adjacent int tensors, with no int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[::2, [1, 0], [2, 3], 0:4:2]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(
                x, (slice(None, None, 2), [1, 0], [2, 3], slice(0, 4, 2))
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

    def test_combined_index_6(self):
        # multiple adjacent and not adjacent int tensors, with no int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[::2, [1, 0], [2, 3], 0:4:2, [4, 6]]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(
                x,
                (slice(None, None, 2), [1, 0], [2, 3], slice(0, 4, 2), [4, 6]),
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

    def test_combined_index_7(self):
        # multiple adjacent and not adjacent int tensors (rank > 1d), with no int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[::2, [[1, 0]], [[2, 3]], 0:4:2, [[4, 6]]]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(
                x,
                (
                    slice(None, None, 2),
                    [[1, 0]],
                    [[2, 3]],
                    slice(0, 4, 2),
                    [[4, 6]],
                ),
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

    def test_combined_index_8(self):
        # multiple adjacent and not adjacent int tensors (rank > 1d), with int tensor at first axis
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[
            [[1, 0], [0, 1]], [[2, 3], [1, 0]], 0:4:2, [[3, 5], [4, 2]]
        ]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(
                x,
                (
                    [[1, 0], [0, 1]],
                    [[2, 3], [1, 0]],
                    slice(0, 4, 2),
                    [[3, 5], [4, 2]],
                ),
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

    def test_combined_index_9(self):
        # multiple int tensors, with broadcast.
        np_data = np.random.randn(3, 4, 5, 6, 7)
        np_res = np_data[[[1, 0]], [1, 0], 0:4:2, [[3, 5], [4, 2]]]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(
                x, ([[1, 0]], [1, 0], slice(0, 4, 2), [[3, 5], [4, 2]])
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

    def test_combined_index_10(self):
        # only one bool tensor with basic-index
        np_data = np.random.randn(3, 4, 5, 6)
        np_res = np_data[:, [True, False, True, False], 4]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(
                x, (slice(None, None, None), [True, False, True, False], 4)
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

    def test_combined_index_11(self):
        # only one bool tensor with all False
        np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
        np_res = np_data[:, [False, False, False, False], 4]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(
                x, (slice(None, None, None), [False, False, False, False], 4)
            )
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

J
JYChen 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336
    def test_index_has_range(self):
        # only one bool tensor with all False
        np_data = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
        np_res = np_data[:, range(3), 4]
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            x = paddle.to_tensor(np_data)
            y = _getitem_static(x, (slice(None, None, None), range(3), 4))
            res = self.exe.run(fetch_list=[y.name])

        np.testing.assert_allclose(res[0], np_res)

337 338 339 340 341 342 343 344 345 346 347 348 349 350

class TestGetItemErrorCase(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def test_bool_shape_error1(self):
        x = paddle.randn((4, 3, 2))
        with self.assertRaises(IndexError):
            y = _getitem_static(x, ([True, False]))

    def test_bool_shape_error2(self):
        x = paddle.randn((4, 3, 2))
        with self.assertRaises(IndexError):
            y = _getitem_static(x, (1, paddle.to_tensor([True, False]), [0, 1]))