dist_matmul.py 32.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from .common import DistributedOperator
from .common import DistributedOperatorImpl
from .common import register_distributed_operator
from .common import register_distributed_operator_impl
19 20
from .common import copy_distributed_attr_for_var
from .common import copy_distributed_attr_for_dist_op
21 22 23 24 25 26
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
27 28 29 30 31 32
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
from ..process import new_process_group
from ..utils import _get_comm_group
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139


def _update_dims_mapping_for_matmul(op_dist_attr):
    changed = False
    op_desc = op_dist_attr.get_owner_op().desc
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
    x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
    y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
    out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

    # Deal with dim > 2 and take care of broadcasting 
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

        compatible_dims_mapping = compute_compatible_dims_mapping([
            broadcast_x_dims_mapping, broadcast_y_dims_mapping,
            broadcast_out_dims_mapping
        ])
        assert compatible_dims_mapping is not None, "There is no compatible dim mapping."

        for i in range(x_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - x_dims_mapping_len)
            if x_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                x_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(y_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - y_dims_mapping_len)
            if y_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                y_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(out_dims_mapping_len - 2):
            if out_dims_mapping[i] != compatible_dims_mapping[i]:
                out_dims_mapping[i] = compatible_dims_mapping[i]
                changed = True

    # The following which uses negative index can be work 
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, y_dims_mapping], [-1, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, out_dims_mapping], [-2, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [y_dims_mapping, out_dims_mapping], [-1, -1])
    if dim_changed:
        changed = True

    # Remove unnecessary dim mapping to make sure the lenght of dims_mapping is same as its tensor
    if x_dims_mapping_len == 1:
        x_dims_mapping.pop(0)
    if y_dims_mapping_len == 1:
        y_dims_mapping.pop(1)

    assert len(x_dims_mapping) == x_dims_mapping_len
    assert len(y_dims_mapping) == y_dims_mapping_len
    assert len(out_dims_mapping) == out_dims_mapping_len

    return changed


class DistributedMatmul(DistributedOperator):
    def __init__(self, name):
        super(DistributedMatmul, self).__init__()
        self._name = name


register_distributed_operator("matmul", DistributedMatmul("matmul"))


# ColumnParallel
class DistributedMatmulImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl0, self).__init__()
        self._name = name
140 141
        self._forward_implemented = True
        self._backward_implemented = False
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def forward(self, serial_op):
        def static_handle(dst_block,
                          src_op,
                          op_dist_attr,
                          input_name_mapping,
                          output_name_mapping,
                          rank_id=0):
            assert len(
                input_name_mapping
            ) == 2, "col_parallel_linear take 2 inputs variable but got {}".format(
                input_name_mapping)
            assert len(
                output_name_mapping
            ) == 1, "col_parallel_linear take 2 inputs variable but got {}".format(
                output_name_mapping)
            assert len(
                input_name_mapping['X']
            ) == 1, "col_parallel_linear input X take 1 variable but got {}".format(
                input_name_mapping['X'])
            assert len(
                input_name_mapping['Y']
            ) == 1, "col_parallel_linear input Y take 1 variable but got {}".format(
                input_name_mapping['Y'])
            assert len(
                output_name_mapping['Out']
            ) == 1, "col_parallel_linear input Out take 1 variable but got {}".format(
                input_name_mapping['Out'])
            X_var = dst_block.var(input_name_mapping['X'][0])
            Weight_var = dst_block.var(input_name_mapping['Y'][0])
            Out_var = dst_block.var(output_name_mapping['Out'][0])

            # TODO infer logic comm presentation
            model_parallel_axis, process_mesh = op_dist_attr.get_owner_context(
            )._get_model_parallel_info()
            group_ranks = _get_comm_group(process_mesh.process_group,
                                          process_mesh.topology,
                                          model_parallel_axis, rank_id)
            group = new_process_group(group_ranks)

            intermediate_var_0 = dst_block.create_var(
                name=unique_name.generate_with_ignorable_key(".".join(
                    ["c_identity", 'tmp'])),
                dtype=X_var.dtype,
                shape=X_var.shape,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=X_var.stop_gradient)
228 229 230
            # copy X_var's dist_attr to intermediate_var_0's dist_attr
            copy_distributed_attr_for_var(op_dist_attr, intermediate_var_0,
                                          X_var)
231 232 233 234 235 236

            check_variable_and_dtype(
                X_var, 'tensor',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                '_c_identity')

237
            c_identity_op = dst_block.append_op(
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                type='c_identity',
                inputs={'X': [X_var]},
                outputs={'Out': intermediate_var_0},
                attrs={
                    'ring_id': group.id,
                    'use_calc_stream': True,
                    'use_model_parallel': True,
                })

            check_variable_and_dtype(intermediate_var_0, 'x',
                                     ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(intermediate_var_0.dtype, 'dtype',
                        ['float16', 'float32', 'float64'], 'linear')
            attrs = {
                'transpose_X': False,
                'transpose_Y': False,
                'alpha': 1,
            }
            inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
258
            matmul_op = dst_block.append_op(
259 260 261 262 263
                type='matmul',
                inputs=inputs,
                outputs={'Out': Out_var},
                attrs=attrs)

264 265 266 267 268 269
            # copy serial op's dist_attr to dist op's dist_attr
            copy_distributed_attr_for_dist_op(c_identity_op, dst_block,
                                              op_dist_attr)
            copy_distributed_attr_for_dist_op(matmul_op, dst_block,
                                              op_dist_attr)

270 271 272 273 274 275 276
        if in_dygraph_mode():
            raise NotImplementedError(
                "Dist op for [{}] with idx [{}] is NOT implemented yet.".format(
                    "matmul", 0))
        else:
            return static_handle

277 278 279 280 281 282

# RowParallel
class DistributedMatmulImpl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl1, self).__init__()
        self._name = name
283 284
        self._forward_implemented = True
        self._backward_implemented = False
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    def forward(self, serial_op):
        def static_handle(dst_block,
                          src_op,
                          op_dist_attr,
                          input_name_mapping,
                          output_name_mapping,
                          rank_id=0):
            assert len(
                input_name_mapping
            ) == 2, "col_parallel_linear take 2 inputs variable but got {}".format(
                input_name_mapping)
            assert len(
                output_name_mapping
            ) == 1, "col_parallel_linear take 2 inputs variable but got {}".format(
                output_name_mapping)
            assert len(
                input_name_mapping['X']
            ) == 1, "col_parallel_linear input X take 1 variable but got {}".format(
                input_name_mapping['X'])
            assert len(
                input_name_mapping['Y']
            ) == 1, "col_parallel_linear input Y take 1 variable but got {}".format(
                input_name_mapping['Y'])
            assert len(
                output_name_mapping['Out']
            ) == 1, "col_parallel_linear input Out take 1 variable but got {}".format(
                input_name_mapping['Out'])
            X_var = dst_block.var(input_name_mapping['X'][0])
            Weight_var = dst_block.var(input_name_mapping['Y'][0])
            Out_var = dst_block.var(output_name_mapping['Out'][0])

            # TODO infer logic comm presentation
            model_parallel_axis, process_mesh = op_dist_attr.get_owner_context(
            )._get_model_parallel_info()
            group_ranks = _get_comm_group(process_mesh.process_group,
                                          process_mesh.topology,
                                          model_parallel_axis, rank_id)
            group = new_process_group(group_ranks)

            check_variable_and_dtype(
                X_var, 'x', ['float16', 'float32', 'float64'], 'linear')
            check_dtype(X_var.dtype, 'dtype',
                        ['float16', 'float32', 'float64'], 'linear')
            attrs = {
                'transpose_X': False,
                'transpose_Y': False,
                'alpha': 1,
            }
            inputs = {'X': X_var, 'Y': Weight_var}
            intermediate_var_0 = dst_block.create_var(
                shape=Out_var.shape,
                dtype=Out_var.dtype,
                type=Out_var.type,
                lod_level=Out_var.lod_level,
                persistable=False,
                is_data=False,
                need_check_feed=Out_var.desc.need_check_feed())
383 384 385 386 387
            # copy Out_var's dist_attr to intermediate_var_0's dist_attr
            copy_distributed_attr_for_var(op_dist_attr, intermediate_var_0,
                                          Out_var)

            matmul_op = dst_block.append_op(
388 389 390 391 392
                type='matmul',
                inputs=inputs,
                outputs={'Out': intermediate_var_0},
                attrs=attrs)

393
            c_allreduce_sum_op = dst_block.append_op(
394 395 396 397 398 399 400 401 402
                type='c_allreduce_sum',
                inputs={'X': intermediate_var_0},
                outputs={'Out': Out_var},
                attrs={
                    'ring_id': group.id,
                    'use_calc_stream': True,
                    'use_model_parallel': True
                })

403 404 405 406 407 408
            # copy serial op's dist_attr to dist op's dist_attr
            copy_distributed_attr_for_dist_op(matmul_op, dst_block,
                                              op_dist_attr)
            copy_distributed_attr_for_dist_op(c_allreduce_sum_op, dst_block,
                                              op_dist_attr)

409 410 411 412 413 414 415
        if in_dygraph_mode():
            raise NotImplementedError(
                "Dist op for [{}] with idx [{}] is NOT implemented yet.".format(
                    "matmul", 0))
        else:
            return static_handle

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

# ReplicateParallel 
class DistributedMatmulImpl2(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl2, self).__init__()
        self._name = name

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed


register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl0("column_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl1("row_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl2("replicate_parallel"))


class DistributedMatmulV2(DistributedOperator):
    def __init__(self, name):
        super(DistributedMatmulV2, self).__init__()
        self._name = name


register_distributed_operator("matmul_v2", DistributedMatmulV2("matmul_v2"))


486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
# ColumnParallel
class DistributedMatmulV2Impl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulV2Impl0, self).__init__()
        self._name = name
        self._forward_implemented = True
        self._backward_implemented = False

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed

    def forward(self, serial_op):
        def static_handle(dst_block,
                          src_op,
                          op_dist_attr,
                          input_name_mapping,
                          output_name_mapping,
                          rank_id=0):
            assert len(
                input_name_mapping
            ) == 2, "col_parallel_linear take 2 inputs variable but got {}".format(
                input_name_mapping)
            assert len(
                output_name_mapping
            ) == 1, "col_parallel_linear take 2 inputs variable but got {}".format(
                output_name_mapping)
            assert len(
                input_name_mapping['X']
            ) == 1, "col_parallel_linear input X take 1 variable but got {}".format(
                input_name_mapping['X'])
            assert len(
                input_name_mapping['Y']
            ) == 1, "col_parallel_linear input Y take 1 variable but got {}".format(
                input_name_mapping['Y'])
            assert len(
                output_name_mapping['Out']
            ) == 1, "col_parallel_linear input Out take 1 variable but got {}".format(
                input_name_mapping['Out'])
            X_var = dst_block.var(input_name_mapping['X'][0])
            Weight_var = dst_block.var(input_name_mapping['Y'][0])
            Out_var = dst_block.var(output_name_mapping['Out'][0])

            # TODO infer logic comm presentation
            model_parallel_axis, process_mesh = op_dist_attr.get_owner_context(
            )._get_model_parallel_info()
566 567 568
            group_ranks = _get_comm_group(process_mesh.process_group,
                                          process_mesh.topology,
                                          model_parallel_axis, rank_id)
569 570 571 572 573 574 575 576 577 578
            group = new_process_group(group_ranks)

            intermediate_var_0 = dst_block.create_var(
                name=unique_name.generate_with_ignorable_key(".".join(
                    ["c_identity", 'tmp'])),
                dtype=X_var.dtype,
                shape=X_var.shape,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=X_var.stop_gradient)
579 580 581
            # copy X_var's dist_attr to intermediate_var_0's dist_attr
            copy_distributed_attr_for_var(op_dist_attr, intermediate_var_0,
                                          X_var)
582 583 584 585 586 587

            check_variable_and_dtype(
                X_var, 'tensor',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                '_c_identity')

588
            c_identity_op = dst_block.append_op(
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
                type='c_identity',
                inputs={'X': [X_var]},
                outputs={'Out': intermediate_var_0},
                attrs={
                    'ring_id': group.id,
                    'use_calc_stream': True,
                    'use_model_parallel': True,
                })

            check_variable_and_dtype(intermediate_var_0, 'x',
                                     ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(intermediate_var_0.dtype, 'dtype',
                        ['float16', 'float32', 'float64'], 'linear')
            attrs = {'trans_x': False, 'trans_y': False}
            inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
605
            matmul_v2_op = dst_block.append_op(
606 607 608 609 610
                type='matmul_v2',
                inputs=inputs,
                outputs={'Out': Out_var},
                attrs=attrs)

611 612 613 614 615 616
            # copy serial op's dist_attr to dist op's dist_attr
            copy_distributed_attr_for_dist_op(c_identity_op, dst_block,
                                              op_dist_attr)
            copy_distributed_attr_for_dist_op(matmul_v2_op, dst_block,
                                              op_dist_attr)

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        if in_dygraph_mode():
            raise NotImplementedError(
                "Dist op for [{}] with idx [{}] is NOT implemented yet.".format(
                    "matmul", 0))
        else:
            return static_handle


# RowParallel
class DistributedMatmulV2Impl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulV2Impl1, self).__init__()
        self._name = name
        self._forward_implemented = True
        self._backward_implemented = False

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed

    def forward(self, serial_op):
        def static_handle(dst_block,
                          src_op,
                          op_dist_attr,
                          input_name_mapping,
                          output_name_mapping,
                          rank_id=0):
            assert len(
                input_name_mapping
            ) == 2, "col_parallel_linear take 2 inputs variable but got {}".format(
                input_name_mapping)
            assert len(
                output_name_mapping
            ) == 1, "col_parallel_linear take 2 inputs variable but got {}".format(
                output_name_mapping)
            assert len(
                input_name_mapping['X']
            ) == 1, "col_parallel_linear input X take 1 variable but got {}".format(
                input_name_mapping['X'])
            assert len(
                input_name_mapping['Y']
            ) == 1, "col_parallel_linear input Y take 1 variable but got {}".format(
                input_name_mapping['Y'])
            assert len(
                output_name_mapping['Out']
            ) == 1, "col_parallel_linear input Out take 1 variable but got {}".format(
                input_name_mapping['Out'])
            X_var = dst_block.var(input_name_mapping['X'][0])
            Weight_var = dst_block.var(input_name_mapping['Y'][0])
            Out_var = dst_block.var(output_name_mapping['Out'][0])

            # TODO infer logic comm presentation
            model_parallel_axis, process_mesh = op_dist_attr.get_owner_context(
            )._get_model_parallel_info()
707 708 709
            group_ranks = _get_comm_group(process_mesh.process_group,
                                          process_mesh.topology,
                                          model_parallel_axis, rank_id)
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
            group = new_process_group(group_ranks)

            check_variable_and_dtype(
                X_var, 'x', ['float16', 'float32', 'float64'], 'linear')
            check_dtype(X_var.dtype, 'dtype',
                        ['float16', 'float32', 'float64'], 'linear')
            attrs = {'trans_x': False, 'trans_y': False}
            inputs = {'X': X_var, 'Y': Weight_var}
            intermediate_var_0 = dst_block.create_var(
                shape=Out_var.shape,
                dtype=Out_var.dtype,
                type=Out_var.type,
                lod_level=Out_var.lod_level,
                persistable=False,
                is_data=False,
                need_check_feed=Out_var.desc.need_check_feed())
726 727 728 729 730
            # copy Out_var's dist_attr to intermediate_var_0's dist_attr
            copy_distributed_attr_for_var(op_dist_attr, intermediate_var_0,
                                          Out_var)

            matmul_v2_op = dst_block.append_op(
731 732 733 734 735
                type='matmul_v2',
                inputs=inputs,
                outputs={'Out': intermediate_var_0},
                attrs=attrs)

736
            c_allreduce_sum_op = dst_block.append_op(
737 738 739 740 741 742 743 744 745
                type='c_allreduce_sum',
                inputs={'X': intermediate_var_0},
                outputs={'Out': Out_var},
                attrs={
                    'ring_id': group.id,
                    'use_calc_stream': True,
                    'use_model_parallel': True
                })

746 747 748 749 750 751
            # copy serial op's dist_attr to dist op's dist_attr
            copy_distributed_attr_for_dist_op(matmul_v2_op, dst_block,
                                              op_dist_attr)
            copy_distributed_attr_for_dist_op(c_allreduce_sum_op, dst_block,
                                              op_dist_attr)

752 753 754 755 756 757 758 759
        if in_dygraph_mode():
            raise NotImplementedError(
                "Dist op for [{}] with idx [{}] is NOT implemented yet.".format(
                    "matmul", 0))
        else:
            return static_handle


760
# ReplicateParallel 
761
class DistributedMatmulV2Impl2(DistributedOperatorImpl):
762
    def __init__(self, name):
763
        super(DistributedMatmulV2Impl2, self).__init__()
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
        self._name = name

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed


812 813 814 815
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl0("column_parallel"))
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl1("row_parallel"))
816
register_distributed_operator_impl(
817
    "matmul_v2", DistributedMatmulV2Impl2("replicate_parallel"))