split_lod_tensor_op.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/memory/memcpy.h"

namespace paddle {
namespace operators {

struct CopyRange {
  size_t begin;
  size_t end;
};

using LoD = framework::LoD;

class SplitLoDTensorOp : public framework::OperatorBase {
 public:
  SplitLoDTensorOp(const std::string &type,
                   const framework::VariableNameMap &inputs,
                   const framework::VariableNameMap &outputs,
                   const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
    auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
    auto *out_true =
        scope.FindVar(Output("OutTrue"))->GetMutable<framework::LoDTensor>();
    auto *out_false =
        scope.FindVar(Output("OutFalse"))->GetMutable<framework::LoDTensor>();
    auto level = static_cast<size_t>(Attr<int>("level"));
    auto &x_lod = x.lod();
    auto &mask_dim = mask.dims();

    std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
    if (platform::is_cpu_place(mask.place())) {
      cpu_mask->ShareDataWith(mask);
    } else if (platform::is_gpu_place(mask.place())) {
#ifdef PADDLE_WITH_CUDA
      cpu_mask->CopyFrom(mask, platform::CPUPlace(), dev_ctx);
#else
      PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option");
#endif
    }
    auto *mask_data = cpu_mask->data<bool>();

    std::vector<std::vector<CopyRange>> copy_ranges(mask_dim[0]);

    // set out_true/out_false lod
    for (size_t t = 0; t < 2; t++) {
      LoD *lod = nullptr;
      if (t == 0) {
        lod = out_false->mutable_lod();
      } else {
        lod = out_true->mutable_lod();
      }
      lod->clear();
      for (size_t i = 0; i < static_cast<size_t>(mask_dim[0]); i++) {
        if (static_cast<size_t>(mask_data[i]) == t) {
          size_t start_idx = i;
          auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
              x_lod, start_idx, start_idx + 1, level);

          auto &lod_length = lod_and_offset.first;
          framework::AppendLoD(lod, lod_length);

          size_t start_offset = lod_and_offset.second.first;
          size_t end_offset = lod_and_offset.second.second;
          copy_ranges[t].emplace_back(CopyRange{start_offset, end_offset});
        }
      }
    }

    for (size_t t = 0; t < 2; ++t) {
      framework::LoDTensor *out;
      if (t == 0) {
        out = out_false;
      } else {
        out = out_true;
      }
      auto &ranges = copy_ranges[t];
      size_t height = std::accumulate(
          ranges.begin(), ranges.end(), 0UL,
          [](size_t a, const CopyRange &b) { return a + b.end - b.begin; });
      auto x_dim = x.dims();
      x_dim[0] = static_cast<int64_t>(height);
      out->Resize(x_dim);
      out->mutable_data(x.place(), x.type());
      size_t offset = 0;
      for (auto &each_range : ranges) {
        size_t len = each_range.end - each_range.begin;
        if (len == 0) {
          continue;
        }
        // out[offset: offset+len] = x[each_range.begin: each_range.end]
        out->Slice(static_cast<int>(offset), static_cast<int>(offset + len))
            .CopyFrom(x.Slice(static_cast<int>(each_range.begin),
                              static_cast<int>(each_range.end)),
                      x.place(), dev_ctx);
        offset += len;
      }
    }
  }
};

class SplitLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SplitLoDTensorOpProtoMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input LoDTensor");
    AddInput("Mask", "A bool column vector which mask the input");
    AddOutput("OutTrue", "True branch of input LoDTensor");
    AddOutput("OutFalse", "False branch of input LoDTensor");
    AddAttr<int>("level", "(int) the specific lod level to split.")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddComment(
        R"DOC(
        Split a LoDTensor with a Mask at certain level. The input LoDTensor
        has 3 sequence at certain lod level. The Mask is a bool column vector,
        such as [0, 1, 0] at the same level. The first and third sequence will
        be send to False Output LoDTensor; whereas the second sequence will
        be send to True Output LoDTensor. Please refer to MergeLoDTensorOp.)DOC");
  }
};

class SplitLoDTensorInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("X"),
                   "SplitLoDTensorOp must has input X.");
    PADDLE_ENFORCE(context->HasInput("Mask"),
                   "SplitLoDTensorOp must has input Mask.");
    PADDLE_ENFORCE(context->HasOutput("OutTrue"),
                   "SplitLoDTensorOp must has output OutTrue.");
    PADDLE_ENFORCE(context->HasOutput("OutFalse"),
                   "SplitLoDTensorOp must has output OutFalse.");

    auto mask_dim = context->GetInputDim("Mask");
    PADDLE_ENFORCE_EQ(mask_dim.size(), 2);
    PADDLE_ENFORCE_EQ(mask_dim[1], 1);

    context->SetOutputDim("OutTrue", context->GetInputDim("X"));
    context->SetOutputDim("OutFalse", context->GetInputDim("X"));
  }
};

class SplitLoDTensorArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto *grad_op = new framework::OpDescBind();
    grad_op->SetType("merge_lod_tensor");
    grad_op->SetInput("InTrue", OutputGrad("OutTrue"));
    grad_op->SetInput("InFalse", OutputGrad("OutFalse"));
    grad_op->SetInput("Mask", Input("Mask"));
    grad_op->SetInput("X", Input("X"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDescBind>(grad_op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(split_lod_tensor, ops::SplitLoDTensorOp,
                  ops::SplitLoDTensorOpProtoMaker,
                  ops::SplitLoDTensorInferShape,
                  ops::SplitLoDTensorArrayGradMaker);