hybrid_parallel_mp_bf16.py 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from hybrid_parallel_mp_model import TestDistMPTraning

import paddle
20
from paddle.distributed import fleet
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
from paddle.distributed.utils.nccl_utils import check_nccl_version_for_bf16


class TestMPFP16(TestDistMPTraning):
    def build_optimizer(self, model):
        grad_clip = paddle.nn.ClipGradByGlobalNorm(1.0)
        scheduler = paddle.optimizer.lr.ExponentialDecay(
            learning_rate=0.001, gamma=0.999, verbose=True
        )
        optimizer = paddle.optimizer.SGD(
            scheduler, grad_clip=grad_clip, parameters=model.parameters()
        )

        model, optimizer = paddle.amp.decorate(
            models=model,
            optimizers=optimizer,
            dtype='bfloat16',
            level='O2',
            save_dtype='float32',
        )

        return optimizer

    def train_batch(self, batch, model, optimizer, is_mp):
        scaler = paddle.amp.GradScaler(
            init_loss_scaling=1, use_dynamic_loss_scaling=False
        )
        if is_mp:
            scaler = fleet.distributed_scaler(scaler)
        with paddle.amp.auto_cast(enable=True, dtype='bfloat16', level="O2"):
            output = model(batch)
            loss = output.mean()

        scaled = scaler.scale(loss)
        scaled.backward()
        scaler.step(optimizer)
        scaler.update()
        optimizer.clear_grad()
        return scaled


if __name__ == "__main__":
63 64 65 66
    if (
        check_nccl_version_for_bf16()
        and paddle.device.cuda.get_device_properties().major >= 8
    ):
67
        unittest.main()