op_test.py 19.2 KB
Newer Older
1 2
import unittest
import numpy as np
3
import random
4
import itertools
Q
Qiao Longfei 已提交
5
import paddle.v2.fluid.core as core
Y
Yu Yang 已提交
6
import collections
Q
Qiao Longfei 已提交
7 8 9 10
from paddle.v2.fluid.backward import append_backward_ops
from paddle.v2.fluid.op import Operator
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.framework import Program, OpProtoHolder
11 12


13 14 15 16 17 18 19 20 21
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
    for i in xrange(len(prob)):
        prob[i] /= prob_sum[i]
    return prob


Q
qijun 已提交
22
def create_op(scope, op_type, inputs, outputs, attrs):
23 24
    kwargs = dict()

Y
Yu Yang 已提交
25
    def __create_var__(name, var_name):
Q
QI JUN 已提交
26
        scope.var(var_name).get_tensor()
Y
Yu Yang 已提交
27 28
        kwargs[name].append(var_name)

Q
qijun 已提交
29
    for in_name, in_dup in Operator.get_op_inputs(op_type):
30 31 32 33
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
Q
qijun 已提交
34
                for sub_in_name, _ in sub_in:
Y
Yu Yang 已提交
35
                    __create_var__(in_name, sub_in_name)
36
            else:
Y
Yu Yang 已提交
37
                __create_var__(in_name, in_name)
38

Q
qijun 已提交
39
    for out_name, out_dup in Operator.get_op_outputs(op_type):
40 41 42
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
43 44
                sub_out = outputs[out_name]
                for sub_out_name, _ in sub_out:
Y
Yu Yang 已提交
45
                    __create_var__(out_name, sub_out_name)
46
            else:
Y
Yu Yang 已提交
47
                __create_var__(out_name, out_name)
48

Q
qijun 已提交
49
    for attr_name in Operator.get_op_attr_names(op_type):
Q
qijun 已提交
50 51
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]
52 53 54 55
    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
Y
Yu Yang 已提交
56
    def __set_input__(var_name, var):
57 58 59 60 61 62 63 64 65 66 67
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
                tensor.set_lod(var[1])
                var = var[0]
            tensor.set_dims(var.shape)
            tensor.set(var, place)
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)
Y
Yu Yang 已提交
68

Q
qijun 已提交
69
    for in_name, in_dup in Operator.get_op_inputs(op.type()):
70 71 72
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
73
                for sub_in_name, sub_in_val in sub_in:
Y
Yu Yang 已提交
74
                    __set_input__(sub_in_name, sub_in_val)
75
            else:
Y
Yu Yang 已提交
76
                __set_input__(in_name, inputs[in_name])
77 78 79 80 81 82


def get_numeric_gradient(scope,
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
83
                         output_names,
84 85
                         delta=0.005,
                         in_place=False):
Y
Yu Yang 已提交
86
    # FIXME: change this method by compile time concepts
87 88 89 90 91 92 93 94
    set_input(scope, op, inputs, core.CPUPlace())

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

    ctx = core.DeviceContext.create(core.CPUPlace())

    def get_output():
Y
Yu Yang 已提交
95
        sum = []
Y
Yancey 已提交
96 97
        for output_name in output_names:
            op.run(scope, ctx)
Y
Yu Yang 已提交
98 99 100
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).mean())
        return np.array(sum).mean()
101 102 103

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
104 105 106 107 108
    tensor_to_check_dtype = tensor_to_check.dtype()
    if tensor_to_check_dtype == core.DataType.FP32:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.DataType.FP64:
        tensor_to_check_dtype = np.float64
Y
Yancey1989 已提交
109 110
    elif tensor_to_check_dtype == core.DataType.INT64:
        tensor_to_check_dtype = np.int64
111 112 113 114 115 116 117 118 119
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
        if tensor_to_check_dtype == np.float32:
            return tensor.get_float_element(i)
Y
Yancey1989 已提交
120 121
        elif tensor_to_check_dtype == np.int64:
            return tensor.get_int64_element(i)
122 123 124 125 126 127
        else:
            return tensor.get_double_element(i)

    def __set_elem__(tensor, i, e):
        if tensor_to_check_dtype == np.float32:
            tensor.set_float_element(i, e)
Y
Yancey1989 已提交
128 129
        elif tensor_to_check_dtype == np.int64:
            tensor.set_int64_element(i, e)
130 131 132
        else:
            tensor.set_double_element(i, e)

133 134 135 136
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in xrange(tensor_size):
        if in_place:
Q
qijun 已提交
137
            set_input(scope, op, inputs, core.CPUPlace())
138 139

        # get one input element throw it's index i.
140
        origin = __get_elem__(tensor_to_check, i)
141 142
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
143
        __set_elem__(tensor_to_check, i, x_pos)
144 145 146
        y_pos = get_output()

        if in_place:
Q
qijun 已提交
147
            set_input(scope, op, inputs, core.CPUPlace())
148 149

        x_neg = origin - delta
150
        __set_elem__(tensor_to_check, i, x_neg)
151 152
        y_neg = get_output()

153
        __set_elem__(tensor_to_check, i, origin)
154 155 156 157 158
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    return gradient_flat.reshape(tensor_to_check.get_dims())


Y
Yang Yang(Tony) 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
def append_input_output(block, op_proto, np_list, is_input):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
            shape = None
            lod_level = None
        else:
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                shape = list(np_value[0].shape)
                lod_level = len(np_value[1])
            else:
                shape = list(np_value.shape)
                lod_level = 0
        return block.create_var(
            dtype="float32", shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
        if is_input:
            if (var_name not in np_list) and var_proto.dispensable:
                continue
            assert (var_name in np_list) or (var_proto.dispensable), \
186
                "Missing {} as input".format(var_name)
Y
Yang Yang(Tony) 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


201
class OpTest(unittest.TestCase):
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        '''Restore random seeds'''
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

Y
Yang Yang(Tony) 已提交
217 218 219 220 221 222
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
223 224 225 226 227
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
                        tensor.set_lod(np_value[1])
                    else:
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
228 229 230 231 232 233 234 235 236 237 238 239
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
                    tensor.set_lod(self.inputs[var_name][1])
                else:
                    tensor.set(self.inputs[var_name], place)
                feed_map[var_name] = tensor

        return feed_map

240
    def check_output_with_place(self, place, atol):
Y
Yang Yang(Tony) 已提交
241 242 243 244 245 246 247 248 249 250 251 252
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

        program = Program()
        block = program.global_block()

        inputs = append_input_output(block, op_proto, self.inputs, True)
        outputs = append_input_output(block, op_proto, self.outputs, False)
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
253 254 255
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268

        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in self.outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)

        feed_map = self.feed_var(inputs, place)

        exe = Executor(place)
D
dzhwinter 已提交
269 270 271 272
        outs = exe.run(program,
                       feed=feed_map,
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yang Yang(Tony) 已提交
273 274

        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
275 276 277
            if out_name not in self.outputs:
                continue

Y
Yang Yang(Tony) 已提交
278 279 280 281 282 283 284 285 286 287
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

288 289
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
290 291 292 293
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
                for sub_out_name, expect in sub_out:
Y
Yang Yang(Tony) 已提交
294
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
295 296
                    actual = outs[idx]
                    actual_t = np.array(actual)
297 298
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
299 300
                    self.assertTrue(
                        np.allclose(
301
                            actual_t, expect_t, atol=atol),
Y
Yang Yang(Tony) 已提交
302 303
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
304 305
                    if isinstance(expect, tuple):
                        self.assertListEqual(
Q
QI JUN 已提交
306 307
                            actual.lod(), expect[1], "Output (" + sub_out_name +
                            ") has different lod at " + str(place))
308
            else:
Y
Yang Yang(Tony) 已提交
309
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
310 311
                actual = outs[idx]
                actual_t = np.array(actual)
312
                expect = self.outputs[out_name]
313
                expect_t = expect[0] if isinstance(expect, tuple) else expect
314 315
                self.assertTrue(
                    np.allclose(
316
                        actual_t, expect_t, atol=atol),
D
dangqingqing 已提交
317
                    "Output (" + out_name + ") has diff at " + str(place))
318
                if isinstance(expect, tuple):
Q
QI JUN 已提交
319
                    self.assertListEqual(actual.lod(), expect[1],
320 321
                                         "Output (" + out_name +
                                         ") has different lod at " + str(place))
322

323
    def check_output(self, atol=1e-5):
Q
qijun 已提交
324
        places = [core.CPUPlace()]
Y
Yang Yang(Tony) 已提交
325
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
Q
qijun 已提交
326 327
            places.append(core.GPUPlace(0))
        for place in places:
328
            self.check_output_with_place(place, atol)
Q
qijun 已提交
329

330 331 332 333 334 335 336 337 338 339 340 341
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
342
                return ("%s Variable %s max gradient diff %f over limit %f, "
343
                        "the first error element is %d, %f, %f") % (
344
                            msg_prefix, name, max_diff, max_relative_error,
345
                            offset, a.flatten()[offset], b.flatten()[offset])
346 347 348 349 350

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
351
                   output_names,
352
                   no_grad_set=None,
353
                   numeric_grad_delta=0.005,
354
                   in_place=False,
Q
Qiao Longfei 已提交
355 356
                   max_relative_error=0.005,
                   user_defined_grads=None):
357
        self.scope = core.Scope()
Q
qijun 已提交
358
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
359
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
360
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
361
        self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
Q
qijun 已提交
362
                            op_attrs)
363 364 365
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
366 367
        if not type(output_names) is list:
            output_names = [output_names]
Q
Qiao Longfei 已提交
368
        numeric_grads = user_defined_grads or [
369 370 371 372 373
            get_numeric_gradient(
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
374
                output_names,
375
                delta=numeric_grad_delta,
376 377
                in_place=in_place) for input_to_check in inputs_to_check
        ]
Q
qijun 已提交
378
        cpu_place = core.CPUPlace()
Y
Yu Yang 已提交
379 380
        cpu_analytic_grads = self._get_gradient(inputs_to_check, cpu_place,
                                                output_names, no_grad_set)
381

Y
Yu Yang 已提交
382 383
        self.__assert_is_close(numeric_grads, cpu_analytic_grads,
                               inputs_to_check, max_relative_error,
Q
qijun 已提交
384 385 386 387
                               "Gradient Check On %s" % str(cpu_place))

        if core.is_compile_gpu() and self.op.support_gpu():
            gpu_place = core.GPUPlace(0)
Y
Yu Yang 已提交
388 389
            gpu_analytic_grads = self._get_gradient(inputs_to_check, gpu_place,
                                                    output_names, no_grad_set)
390

Q
qijun 已提交
391
            self.__assert_is_close(numeric_grads, gpu_analytic_grads,
Y
Yu Yang 已提交
392
                                   inputs_to_check, max_relative_error,
Q
qijun 已提交
393 394
                                   "Gradient Check On %s" % str(gpu_place))

Y
Yu Yang 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408
    @staticmethod
    def _create_var_descs_(block, var_dict):
        # FIXME: Try unify with `append_input_output`
        for param_name in var_dict:
            var = var_dict[param_name]
            if not isinstance(var, list) and not isinstance(var, tuple):
                var = [(param_name, var, None)]
            if not isinstance(var[0], list) and not isinstance(var[0], tuple):
                var = [(param_name, var[0], var[1])]

            for i, item in enumerate(var):
                if not isinstance(item[0], basestring):
                    item = [[param_name] + list(item)]
                if len(item) == 2:
409 410 411 412 413
                    if isinstance(item[1], tuple):
                        var[i] = [item[0], item[1][0], item[1][1]]
                    else:
                        # only set var name and value, set lod to None
                        var[i] = list(item) + [None]
Y
Yu Yang 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
            var_descs = [(block.create_var(
                name=name, shape=each.shape, dtype=each.dtype), each, lod)
                         for name, each, lod in var]

            yield param_name, var_descs

    @staticmethod
    def _merge_list(iterable):
        return reduce(lambda a, b: list(a) + list(b), iterable, [])

    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_lod(lod)
        return tensor

    def _get_gradient(self, input_to_check, place, output_names, no_grad_set):
        prog = Program()
        block = prog.global_block()
        inputs_with_np = {
            key: value
            for (key, value) in OpTest._create_var_descs_(
                block, getattr(self, 'inputs', {}))
        }
        outputs_with_np = {
            key: val
            for (key, val) in OpTest._create_var_descs_(
                block, getattr(self, 'outputs', {}))
        }
        inputs = {
            k: [item[0] for item in inputs_with_np[k]]
            for k in inputs_with_np
        }
        outputs = {
            k: [item[0] for item in outputs_with_np[k]]
            for k in outputs_with_np
        }

Q
QI JUN 已提交
454
        op = block.append_op(
Y
Yu Yang 已提交
455 456 457 458 459
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=getattr(self, 'attrs', {}))

Q
QI JUN 已提交
460 461 462
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
463 464
        mean_inputs = map(block.var, output_names)
        if len(mean_inputs) == 1:
F
fengjiayi 已提交
465
            loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1])
Q
QI JUN 已提交
466
            op = block.append_op(
Y
Yu Yang 已提交
467
                inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
Q
QI JUN 已提交
468 469
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
470 471 472
        else:
            avg_sum = []
            for cur_loss in mean_inputs:
F
fengjiayi 已提交
473
                cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1])
Q
QI JUN 已提交
474
                op = block.append_op(
Y
Yu Yang 已提交
475 476 477
                    inputs={"X": [cur_loss]},
                    outputs={"Out": [cur_avg_loss]},
                    type="mean")
Q
QI JUN 已提交
478 479
                op.desc.infer_var_type(block.desc)
                op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
480 481
                avg_sum.append(cur_avg_loss)

F
fengjiayi 已提交
482
            loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1])
Q
QI JUN 已提交
483
            op_sum = block.append_op(
Y
Yu Yang 已提交
484
                inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
Q
QI JUN 已提交
485 486
            op_sum.desc.infer_var_type(block.desc)
            op_sum.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
487

F
fengjiayi 已提交
488
            loss = block.create_var(dtype=loss_sum.dtype, shape=[1])
Q
QI JUN 已提交
489
            op_loss = block.append_op(
Y
Yu Yang 已提交
490 491 492 493
                inputs={"X": loss_sum},
                outputs={"Out": loss},
                type='scale',
                attrs={'scale': 1.0 / float(len(avg_sum))})
Q
QI JUN 已提交
494 495
            op_loss.desc.infer_var_type(block.desc)
            op_loss.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
496 497 498 499 500 501 502 503 504 505 506

        param_grad_list = append_backward_ops(
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

        feed_dict = {
            item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place)
            for p_name in inputs_with_np for item in inputs_with_np[p_name]
        }

        fetch_list = [g for p, g in param_grad_list]
        executor = Executor(place)
D
dzhwinter 已提交
507 508 509
        return map(
            np.array,
            executor.run(prog, feed_dict, fetch_list, return_numpy=False))