test_elementwise_mul_onednn_op.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18 19

from paddle import enable_static
20
from paddle.fluid.tests.unittests.eager_op_test import skip_check_grad_ci
21 22 23
from paddle.fluid.tests.unittests.test_elementwise_mul_op import (
    ElementwiseMulOp,
)
24 25


26
class TestOneDNNElementwiseMulOp(ElementwiseMulOp):
27 28 29 30
    def init_kernel_type(self):
        self.use_mkldnn = True

    def init_dtype(self):
31 32
        self.dtype = np.float32

33

34
class TestOneDNNElementwiseMulOp2(TestOneDNNElementwiseMulOp):
35
    def init_input_output(self):
36 37
        self.x = np.random.random((100,)).astype(self.dtype)
        self.y = np.random.random((100,)).astype(self.dtype)
38 39 40
        self.out = np.multiply(self.x, self.y)


41
class TestOneDNNElementwiseMulOp3(TestOneDNNElementwiseMulOp):
42 43 44 45 46 47
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)


48
class TestOneDNNElementwiseMulOp4(TestOneDNNElementwiseMulOp):
49 50 51 52 53 54 55 56 57 58 59 60 61
    def init_input_output(self):
        self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype)
        self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    # TODO(jczaja): Enable when grad is ready
    def test_check_grad_normal(self):
        pass

    def test_check_grad_ingore_y(self):
        pass


62
class TestOneDNNElementwiseMulOp5(TestOneDNNElementwiseMulOp):
63 64 65 66 67
    def init_input_output(self):
        self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype)
        self.y = np.random.uniform(1, 2, [100]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

68 69 70 71 72 73 74 75 76 77
    # TODO(jczaja): Enable when grad is ready
    def test_check_grad_normal(self):
        pass

    def test_check_grad_ingore_y(self):
        pass

    def test_check_grad_ingore_x(self):
        pass

78

79
class TestOneDNNElementwiseMulOpZeroDim(TestOneDNNElementwiseMulOp):
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    def init_input_output(self):
        self.x = np.random.random((100,)).astype(self.dtype)
        self.y = np.array(3.0).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    def test_check_grad_normal(self):
        pass

    def test_check_grad_ingore_y(self):
        pass

    def test_check_grad_ingore_x(self):
        pass


95
class TestOneDNNElementwiseMulOpZeroDim2(TestOneDNNElementwiseMulOp):
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    def init_input_output(self):
        self.x = np.array(3.0).astype(self.dtype)
        self.y = np.random.random((100,)).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    def test_check_grad_normal(self):
        pass

    def test_check_grad_ingore_y(self):
        pass

    def test_check_grad_ingore_x(self):
        pass


111
class TestOneDNNElementwiseMulOpZeroDim3(TestOneDNNElementwiseMulOp):
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    def init_input_output(self):
        self.x = np.array(3.0).astype(self.dtype)
        self.y = np.array(3.0).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    def test_check_grad_normal(self):
        pass

    def test_check_grad_ingore_y(self):
        pass

    def test_check_grad_ingore_x(self):
        pass


127 128 129 130
''' INT8 Tests '''


@skip_check_grad_ci(
131 132
    reason="oneDNN's int8 elementwise_ops don't implemend grad kernel."
)
133
class TestInt8(ElementwiseMulOp):
134 135
    def init_kernel_type(self):
        self.use_mkldnn = True
136 137 138 139 140 141 142 143 144
        self._cpu_only = True

    def init_dtype(self):
        self.dtype = np.int8

    def init_input_output(self):
        self.x = np.random.randint(0, 3, (12, 9)).astype("int8")
        self.y = np.random.randint(0, 3, (12, 9)).astype("int8")
        self.out = np.multiply(self.x, self.y)
145

146
    def init_scales(self):
147 148 149
        self.attrs['scale_x'] = 1.0
        self.attrs['scale_y'] = 1.0
        self.attrs['scale_out'] = 1.0
150 151

    def test_check_output(self):
152 153
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.init_scales()
154
        self.check_output(check_dygraph=(not self.use_mkldnn))
155 156 157 158 159 160 161 162 163

    def test_check_grad_normal(self):
        pass

    def test_check_grad_ingore_x(self):
        pass

    def test_check_grad_ingore_y(self):
        pass
164

165

166
if __name__ == '__main__':
167
    enable_static()
168
    unittest.main()