spectral_op.cu 20.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
#include <functional>
#include <list>
#include <memory>
#include <mutex>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>

#include "paddle/fluid/operators/conj_op.h"
23
#include "paddle/fluid/operators/spectral_helper.h"
24 25
#include "paddle/fluid/operators/spectral_op.h"
#include "paddle/fluid/operators/transpose_op.h"
26
#include "paddle/fluid/platform/enforce.h"
27 28 29 30 31 32

namespace paddle {
namespace operators {

namespace {

33 34 35 36 37 38 39
// Calculates the normalization constant
double fft_normalization_scale(FFTNormMode normalization,
                               const std::vector<int64_t>& sizes,
                               const std::vector<int64_t>& dims) {
  // auto norm = static_cast<fft_norm_mode>(normalization);
  if (normalization == FFTNormMode::none) {
    return static_cast<double>(1.0);
40 41
  }

42 43 44 45 46 47 48 49
  int64_t signal_numel = 1;
  for (auto dim : dims) {
    signal_numel *= sizes[dim];
  }
  const double scale_denom = (normalization == FFTNormMode::by_sqrt_n)
                                 ? std::sqrt(signal_numel)
                                 : static_cast<double>(signal_numel);
  return static_cast<double>(1.0 / scale_denom);
50 51
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
template <typename DeviceContext, typename T>
void exec_normalization(const DeviceContext& ctx, const Tensor* in, Tensor* out,
                        FFTNormMode normalization,
                        const std::vector<int64_t>& sizes,
                        const std::vector<int64_t>& axes) {
  double scale = fft_normalization_scale(normalization, sizes, axes);
  if (scale != 1.0) {
    auto eigen_out = framework::EigenVector<T>::Flatten(*out);
    auto eigen_in = framework::EigenVector<T>::Flatten(*in);
    auto dev = ctx.eigen_device();
    EigenScale<Eigen::GpuDevice, T>::Eval(*dev, eigen_out, eigen_in,
                                          static_cast<T>(scale),
                                          static_cast<T>(0), false);
  } else {
    framework::TensorCopy(*in, ctx.GetPlace(), out);
67
  }
68
}
69

70 71 72 73 74 75 76 77 78 79 80
#if defined(PADDLE_WITH_CUDA)
CuFFTConfig create_cufft_config(const framework::Tensor& input,
                                const framework::Tensor& output,
                                int signal_ndim) {
  // Create the transform plan (either from cache or locally)
  const auto value_type = framework::IsComplexType(input.type())
                              ? framework::ToRealType(input.type())
                              : input.type();
  auto fft_type = GetFFTTransformType(input.type(), output.type());
  // signal sizes
  std::vector<int64_t> signal_size(signal_ndim + 1);
81

82 83 84 85 86
  signal_size[0] = input.dims()[0];
  for (int64_t i = 1; i <= signal_ndim; ++i) {
    auto in_size = input.dims()[i];
    auto out_size = output.dims()[i];
    signal_size[i] = std::max(in_size, out_size);
87
  }
88 89 90
  PlanKey key(framework::vectorize(input.dims()),
              framework::vectorize(output.dims()), signal_size, fft_type,
              value_type);
91

92 93
  return CuFFTConfig(key);
}
94

95 96 97 98
// Execute a pre-planned transform
static void exec_cufft_plan_raw(const CuFFTConfig& config, void* in_data,
                                void* out_data, bool forward) {
  auto& plan = config.plan();
99

100 101 102
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftXtExec(
      plan, in_data, out_data, forward ? CUFFT_FORWARD : CUFFT_INVERSE));
}
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
template <typename DeviceContext, typename Ti, typename To>
void exec_cufft_plan(const DeviceContext& ctx, const CuFFTConfig& config,
                     framework::Tensor* input, framework::Tensor* output,
                     bool forward) {
  // execute transform plan
  auto fft_type = config.transform_type();
  if (fft_type == FFTTransformType::C2R && forward) {
    forward = false;
    framework::Tensor input_conj(input->type());
    input_conj.mutable_data<Ti>(input->dims(), ctx.GetPlace());
    platform::ForRange<DeviceContext> for_range(ctx, input->numel());
    math::ConjFunctor<Ti> functor(input->data<Ti>(), input->numel(),
                                  input_conj.data<Ti>());
    for_range(functor);
    exec_cufft_plan_raw(config, input_conj.data<void>(), output->data<void>(),
                        forward);
  } else if (fft_type == FFTTransformType::R2C && !forward) {
    forward = true;
    framework::Tensor out_conj(output->type());
    out_conj.mutable_data<To>(output->dims(), ctx.GetPlace());
    exec_cufft_plan_raw(config, input->data<void>(), out_conj.data<void>(),
                        forward);

    platform::ForRange<DeviceContext> for_range(ctx, output->numel());
    math::ConjFunctor<To> functor(out_conj.data<To>(), output->numel(),
                                  output->data<To>());
    for_range(functor);
  } else {
    exec_cufft_plan_raw(config, input->data<void>(), output->data<void>(),
                        forward);
134
  }
135
}
136

137
#elif defined(PADDLE_WITH_HIP)
138

139 140 141 142 143 144 145 146 147 148
HIPFFTConfig create_hipfft_config(const framework::Tensor& input,
                                  const framework::Tensor& output,
                                  int signal_ndim) {
  // Create the transform plan (either from cache or locally)
  const auto value_type = framework::IsComplexType(input.type())
                              ? framework::ToRealType(input.type())
                              : input.type();
  auto fft_type = GetFFTTransformType(input.type(), output.type());
  // signal sizes
  std::vector<int64_t> signal_size(signal_ndim + 1);
149

150 151 152 153 154 155 156 157 158 159 160 161
  signal_size[0] = input.dims()[0];
  for (int64_t i = 1; i <= signal_ndim; ++i) {
    auto in_size = input.dims()[i];
    auto out_size = output.dims()[i];
    signal_size[i] = std::max(in_size, out_size);
  }
  PlanKey key(framework::vectorize(input.dims()),
              framework::vectorize(output.dims()), signal_size, fft_type,
              value_type);

  return HIPFFTConfig(key);
}
162 163

// Execute a pre-planned transform
164 165
static void exec_hipfft_plan_raw(const HIPFFTConfig& config, void* in_data,
                                 void* out_data, bool forward) {
166
  auto& plan = config.plan();
167

168 169 170 171
  auto value_type = config.data_type();
  if (value_type == framework::proto::VarType::FP32) {
    switch (config.transform_type()) {
      case FFTTransformType::C2C: {
172 173 174 175
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecC2C(
            plan, static_cast<hipfftComplex*>(in_data),
            static_cast<hipfftComplex*>(out_data),
            forward ? HIPFFT_FORWARD : HIPFFT_BACKWARD));
176 177 178
        return;
      }
      case FFTTransformType::R2C: {
179 180 181
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecR2C(
            plan, static_cast<hipfftReal*>(in_data),
            static_cast<hipfftComplex*>(out_data)));
182 183 184
        return;
      }
      case FFTTransformType::C2R: {
185 186 187
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecC2R(
            plan, static_cast<hipfftComplex*>(in_data),
            static_cast<hipfftReal*>(out_data)));
188 189 190 191 192 193
        return;
      }
    }
  } else if (value_type == framework::proto::VarType::FP64) {
    switch (config.transform_type()) {
      case FFTTransformType::C2C: {
194 195 196 197
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecZ2Z(
            plan, static_cast<hipfftDoubleComplex*>(in_data),
            static_cast<hipfftDoubleComplex*>(out_data),
            forward ? HIPFFT_FORWARD : HIPFFT_BACKWARD));
198 199 200
        return;
      }
      case FFTTransformType::R2C: {
201 202 203
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecD2Z(
            plan, static_cast<hipfftDoubleReal*>(in_data),
            static_cast<hipfftDoubleComplex*>(out_data)));
204 205 206
        return;
      }
      case FFTTransformType::C2R: {
207 208 209
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftExecZ2D(
            plan, static_cast<hipfftDoubleComplex*>(in_data),
            static_cast<hipfftDoubleReal*>(out_data)));
210 211 212 213 214 215 216 217
        return;
      }
    }
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "hipFFT only support transforms of type float32 and float64"));
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
template <typename DeviceContext, typename Ti, typename To>
void exec_hipfft_plan(const DeviceContext& ctx, const HIPFFTConfig& config,
                      framework::Tensor* input, framework::Tensor* output,
                      bool forward) {
  auto fft_type = config.transform_type();
  if (fft_type == FFTTransformType::C2R && forward) {
    forward = false;
    framework::Tensor input_conj(input->type());
    input_conj.mutable_data<Ti>(input->dims(), ctx.GetPlace());
    platform::ForRange<DeviceContext> for_range(ctx, input->numel());
    math::ConjFunctor<Ti> functor(input->data<Ti>(), input->numel(),
                                  input_conj.data<Ti>());
    for_range(functor);
    exec_hipfft_plan_raw(config, input_conj.data<void>(), output->data<void>(),
                         forward);
  } else if (fft_type == FFTTransformType::R2C && !forward) {
    forward = true;
    framework::Tensor out_conj(output->type());
    out_conj.mutable_data<To>(output->dims(), ctx.GetPlace());
    exec_hipfft_plan_raw(config, input->data<void>(), out_conj.data<void>(),
                         forward);

    platform::ForRange<DeviceContext> for_range(ctx, output->numel());
    math::ConjFunctor<To> functor(out_conj.data<To>(), output->numel(),
                                  output->data<To>());
    for_range(functor);
  } else {
    exec_hipfft_plan_raw(config, input->data<void>(), output->data<void>(),
                         forward);
  }
}

#endif

252 253 254 255 256 257 258 259 260
// Execute a general unnormalized fft operation (can be c2c, onesided r2c or
// onesided c2r)
template <typename DeviceContext, typename Ti, typename To>
void exec_fft(const DeviceContext& ctx, const Tensor* X, Tensor* out,
              const std::vector<int64_t>& dim, bool forward) {
  const auto x_dims = framework::vectorize(X->dims());
  const int64_t ndim = static_cast<int64_t>(X->dims().size());
  auto tensor_place = ctx.GetPlace();

261
  // make a dim permutation
262 263 264 265 266 267 268 269 270 271 272 273
  std::vector<int> dim_permute(ndim);
  std::iota(dim_permute.begin(), dim_permute.end(), int{0});
  std::vector<bool> is_transformed_dim(ndim);
  for (const auto& d : dim) {
    is_transformed_dim[d] = true;
  }
  auto batch_end =
      std::partition(dim_permute.begin(), dim_permute.end(),
                     [&](int64_t d) { return !is_transformed_dim[d]; });
  std::sort(dim_permute.begin(), batch_end);
  std::copy(dim.cbegin(), dim.cend(), batch_end);

274 275 276 277 278 279 280
  // transpose input according to dim permutation
  auto transposed_input_shape = X->dims().transpose(dim_permute);
  framework::Tensor transposed_input;
  transposed_input.Resize(transposed_input_shape);
  transposed_input.mutable_data<Ti>(tensor_place);
  TransCompute<DeviceContext, Ti>(ndim, ctx, *X, &transposed_input,
                                  dim_permute);
281 282

  // Reshape batch dimensions into a single dimension
283 284 285 286 287
  const int64_t signal_ndim = static_cast<int64_t>(dim.size());
  std::vector<int64_t> collapsed_input_shape(signal_ndim + 1);

  auto transposed_input_shape_ = framework::vectorize(transposed_input_shape);
  const int64_t batch_dims = ndim - signal_ndim;
288
  auto batch_size =
289 290
      std::accumulate(transposed_input_shape_.begin(),
                      transposed_input_shape_.begin() + batch_dims,
291
                      static_cast<int>(1), std::multiplies<int>());
292
  collapsed_input_shape[0] = batch_size;
293

294 295
  std::copy(transposed_input_shape_.begin() + batch_dims,
            transposed_input_shape_.end(), collapsed_input_shape.begin() + 1);
296

297 298 299 300 301 302 303
  framework::Tensor& collapsed_input = transposed_input;
  collapsed_input.Resize(framework::make_ddim(collapsed_input_shape));

  // make a collpased output
  const auto out_dims = framework::vectorize(out->dims());
  std::vector<int64_t> collapsed_output_shape(1 + signal_ndim);
  collapsed_output_shape[0] = batch_size;
304
  for (size_t i = 0; i < dim.size(); ++i) {
305
    collapsed_output_shape[i + 1] = out_dims[dim[i]];
306
  }
307 308 309 310 311 312 313 314
  framework::Tensor collapsed_output;
  collapsed_output.Resize(framework::make_ddim(collapsed_output_shape));
  collapsed_output.mutable_data<To>(tensor_place);

#if defined(PADDLE_WITH_CUDA)
  // create plan
  CuFFTConfig config =
      create_cufft_config(collapsed_input, collapsed_output, signal_ndim);
315
  // prepare cufft for execution
316 317
  PADDLE_ENFORCE_CUDA_SUCCESS(
      platform::dynload::cufftSetStream(config.plan(), ctx.stream()));
318
  framework::Tensor workspace_tensor;
319 320 321 322 323 324
  workspace_tensor.mutable_data<To>(tensor_place, config.workspace_size());
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftSetWorkArea(
      config.plan(), workspace_tensor.data<To>()));
  // execute transform plan
  exec_cufft_plan<DeviceContext, Ti, To>(ctx, config, &collapsed_input,
                                         &collapsed_output, forward);
325

326 327 328 329 330 331 332 333 334 335 336
#elif defined(PADDLE_WITH_HIP)
  // create plan
  HIPFFTConfig config =
      create_hipfft_config(collapsed_input, collapsed_output, signal_ndim);
  // prepare cufft for execution
  PADDLE_ENFORCE_CUDA_SUCCESS(
      platform::dynload::hipfftSetStream(config.plan(), ctx.stream()));
  framework::Tensor workspace_tensor;
  workspace_tensor.mutable_data<To>(tensor_place, config.workspace_size());
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftSetWorkArea(
      config.plan(), workspace_tensor.data<To>()));
337
  // execute transform plan
338 339 340
  exec_hipfft_plan<DeviceContext, Ti, To>(ctx, config, &collapsed_input,
                                          &collapsed_output, forward);
#endif
341 342

  // Inverting output by reshape and transpose to original batch and dimension
343
  auto transposed_out_shape = out->dims().transpose(dim_permute);
344

345 346
  collapsed_output.Resize(transposed_out_shape);
  auto& transposed_output = collapsed_output;
347

348 349 350
  std::vector<int> reverse_dim_permute(ndim);
  for (size_t i = 0; i < ndim; i++) {
    reverse_dim_permute[dim_permute[i]] = i;
351 352
  }

353 354
  TransCompute<DeviceContext, To>(ndim, ctx, transposed_output, out,
                                  reverse_dim_permute);
355
}
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
}  // anonymous namespace

// Use the optimized path to perform single R2C or C2R if transformation dim is
// supported by cuFFT
bool use_optimized_cufft_path(const std::vector<int64_t>& axes) {
  // For performance reason, when axes starts with (0, 1), do not use the
  // optimized path.
  if (axes.size() > kMaxCUFFTNdim ||
      (axes.size() >= 2 && axes[0] == 0 && axes[1] == 1)) {
    return false;
  } else {
    return true;
  }
}

template <typename Ti, typename To>
struct FFTC2CFunctor<platform::CUDADeviceContext, Ti, To> {
  void operator()(const platform::CUDADeviceContext& ctx, const Tensor* X,
                  Tensor* out, const std::vector<int64_t>& axes,
                  FFTNormMode normalization, bool forward) {
    if (axes.empty()) {
      framework::TensorCopy(*X, ctx.GetPlace(), out);
      return;
    }

    framework::Tensor* p_out = out;
    std::vector<int64_t> out_dims = framework::vectorize(X->dims());
    std::vector<int64_t> working_axes(axes.begin(), axes.end());
    std::vector<int64_t> first_dims;
    size_t max_dims;
    framework::Tensor working_tensor;
    working_tensor.mutable_data<Ti>(X->dims(), ctx.GetPlace());
    framework::Tensor* p_working_tensor = &working_tensor;
    framework::TensorCopy(*X, ctx.GetPlace(), &working_tensor);

    while (true) {
      max_dims =
          std::min(static_cast<size_t>(kMaxCUFFTNdim), working_axes.size());
      first_dims.assign(working_axes.end() - max_dims, working_axes.end());

      exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, p_working_tensor,
                                                    p_out, first_dims, forward);
      working_axes.resize(working_axes.size() - max_dims);
      first_dims.clear();

      if (working_axes.empty()) {
        break;
      }

      std::swap(p_out, p_working_tensor);
    }
    exec_normalization<platform::CUDADeviceContext, To>(
        ctx, p_out, out, normalization, out_dims, axes);
  }
};

template <typename Ti, typename To>
struct FFTC2RFunctor<platform::CUDADeviceContext, Ti, To> {
  void operator()(const platform::CUDADeviceContext& ctx, const Tensor* X,
                  Tensor* out, const std::vector<int64_t>& axes,
                  FFTNormMode normalization, bool forward) {
    std::vector<int64_t> in_dims = framework::vectorize(X->dims());
    std::vector<int64_t> out_dims = framework::vectorize(out->dims());

    if (use_optimized_cufft_path(axes)) {
      framework::Tensor x_copy(X->type());
      x_copy.mutable_data<Ti>(X->dims(), ctx.GetPlace());
      framework::TensorCopy(*X, ctx.GetPlace(), &x_copy);
      exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, &x_copy, out, axes,
                                                    forward);
    } else {
      framework::Tensor temp_tensor;
      temp_tensor.mutable_data<Ti>(X->dims(), ctx.GetPlace());
      const std::vector<int64_t> dims(axes.begin(), axes.end() - 1);

      FFTC2CFunctor<platform::CUDADeviceContext, Ti, Ti> c2c_functor;
      c2c_functor(ctx, X, &temp_tensor, dims, FFTNormMode::none, forward);

      exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, &temp_tensor, out,
                                                    {axes.back()}, forward);
    }
    exec_normalization<platform::CUDADeviceContext, To>(
        ctx, out, out, normalization, out_dims, axes);
  }
};

// n dimension real to complex FFT use cufft lib
template <typename Ti, typename To>
struct FFTR2CFunctor<platform::CUDADeviceContext, Ti, To> {
  void operator()(const platform::CUDADeviceContext& ctx, const Tensor* X,
                  Tensor* out, const std::vector<int64_t>& axes,
                  FFTNormMode normalization, bool forward) {
    // Step1: R2C transform on the last dimension
    framework::Tensor* r2c_out = out;
    const std::vector<int64_t> last_dim{axes.back()};
    std::vector<int64_t> out_dims = framework::vectorize(out->dims());
    exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, X, r2c_out, last_dim,
                                                  forward);

    // Step2: C2C transform on the remaining dimension
    framework::Tensor c2c_out;
    if (axes.size() > 1) {
      c2c_out.mutable_data<To>(out->dims(), ctx.GetPlace());
      std::vector<int64_t> remain_dim(axes.begin(), axes.end() - 1);
      FFTC2CFunctor<platform::CUDADeviceContext, To, To> fft_c2c_func;
      fft_c2c_func(ctx, r2c_out, &c2c_out, remain_dim, FFTNormMode::none,
                   forward);
    }

    const auto in_sizes = framework::vectorize(X->dims());
    framework::Tensor* norm_tensor = axes.size() > 1 ? &c2c_out : r2c_out;
    exec_normalization<platform::CUDADeviceContext, To>(
        ctx, norm_tensor, out, normalization, in_sizes, axes);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fft_c2c, ops::FFTC2CKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FFTC2CKernel<paddle::platform::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
    fft_c2c_grad,
    ops::FFTC2CGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FFTC2CGradKernel<paddle::platform::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
    fft_c2r, ops::FFTC2RKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FFTC2RKernel<paddle::platform::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
    fft_c2r_grad,
    ops::FFTC2RGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FFTC2RGradKernel<paddle::platform::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
    fft_r2c, ops::FFTR2CKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FFTR2CKernel<paddle::platform::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
    fft_r2c_grad,
    ops::FFTR2CGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FFTR2CGradKernel<paddle::platform::CUDADeviceContext, double>);