fluid.html 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: PaddlePaddle Fluid &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_cn.html">MOBILE</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/dev/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
128 129 130 131 132 133
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/fabric_cn.html">fabric集群</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/openmpi_cn.html">openmpi集群</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/k8s_cn.html">kubernetes单机</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/k8s_distributed_cn.html">kubernetes distributed分布式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/k8s_aws_cn.html">AWS上运行kubernetes集群训练</a></li>
134 135
</ul>
</li>
136 137 138 139 140 141
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/capi/index_cn.html">PaddlePaddle C-API</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/capi/compile_paddle_lib_cn.html">编译 PaddlePaddle 预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/capi/workflow_of_capi_cn.html">C-API 使用流程</a></li>
</ul>
</li>
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">训练与应用</a></li>
172 173 174 175 176 177 178 179 180 181 182 183 184
<li class="toctree-l2"><a class="reference internal" href="../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_cn.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_android_cn.html">Android平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_ios_cn.html">iOS平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_raspberry_cn.html">Raspberry Pi平台编译指南</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Design Doc: PaddlePaddle Fluid</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-paddlepaddle-fluid">
<span id="design-doc-paddlepaddle-fluid"></span><h1>Design Doc: PaddlePaddle Fluid<a class="headerlink" href="#design-doc-paddlepaddle-fluid" title="永久链接至标题"></a></h1>
<div class="section" id="why-fluid">
<span id="why-fluid"></span><h2>Why Fluid<a class="headerlink" href="#why-fluid" title="永久链接至标题"></a></h2>
234 235
<p>When Baidu developed PaddlePaddle in 2013, the only well-known open source deep learning system at the time was Caffe.  However, when PaddlePaddle was open-sourced in 2016, many other choices were available. There was a challenge &#8211; what is the need for open sourcing yet another deep learning framework?</p>
<p>Fluid is the answer.  Fluid is similar to PyTorch and TensorFlow Eager Execution, which describes the &#8220;process&#8221; of training or inference using the concept of a model.  In fact in PyTorch, TensorFlow Eager Execution and Fluid, there is no  concept of a model at all. The details are covered in the sections below. Fluid is currently more extreme in the above mentioned idea than PyTorch and Eager Execution, and we are trying to push Fluid towards the directions of a compiler and a new programming language for deep learning.</p>
236 237 238
</div>
<div class="section" id="the-evolution-of-deep-learning-systems">
<span id="the-evolution-of-deep-learning-systems"></span><h2>The Evolution of Deep Learning Systems<a class="headerlink" href="#the-evolution-of-deep-learning-systems" title="永久链接至标题"></a></h2>
239 240
<p>Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented.</p>
<p>| Existed since | model as sequence of layers | model as graph of operators | No model |
241 242 243 244
|&#8211;|&#8211;|&#8211;|&#8211;|
| 2013 | Caffe, Theano, Torch, PaddlePaddle | | |
| 2015 | | TensorFlow, MxNet, Caffe2, ONNX, n-graph | |
| 2016 | | | PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid |</p>
245
<p>From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model.  To understand the reasons behind this direction, a comparison of the <em>programming paradigms</em> or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these.</p>
246 247 248
</div>
<div class="section" id="deep-learning-programming-paradigms">
<span id="deep-learning-programming-paradigms"></span><h2>Deep Learning Programming Paradigms<a class="headerlink" href="#deep-learning-programming-paradigms" title="永久链接至标题"></a></h2>
249
<p>With the systems listed as the first or second generation, e.g., Caffe or TensorFlow, an AI application training program looks like the following:</p>
250 251 252 253 254 255 256 257 258 259
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;image&quot;</span><span class="p">)</span>
<span class="n">l</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;label&quot;</span><span class="p">)</span>
<span class="n">f</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">W</span><span class="p">)</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">mse</span><span class="p">(</span><span class="n">l</span><span class="p">,</span> <span class="n">s</span><span class="p">)</span>

<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span> <span class="c1"># train for 1000 iterations</span>
    <span class="n">m</span> <span class="o">=</span> <span class="n">read_minibatch</span><span class="p">()</span>
    <span class="n">forward</span><span class="p">({</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">m</span><span class="p">},</span> <span class="n">minimize</span><span class="o">=</span><span class="n">c</span><span class="p">)</span>
    <span class="n">backward</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
260

261 262 263 264 265
<span class="k">print</span> <span class="n">W</span> <span class="c1"># print the trained model parameters.</span>
</pre></div>
</div>
<p>The above program includes two parts:</p>
<ol class="simple">
266 267
<li>The first part describes the model, and</li>
<li>The second part describes the training process (or inference process) for the model.</li>
268
</ol>
269 270
<p>This paradigm has a well-known problem that limits the productivity of programmers. If the programmer made a mistake in configuring the model, the error messages wouldn&#8217;t show up until the second part is executed and <code class="docutils literal"><span class="pre">forward</span></code> and <code class="docutils literal"><span class="pre">backward</span></code> propagations are performed. This makes it difficult for the programmer to debug and locate a mistake that is located blocks away from the actual error prompt.</p>
<p>This problem of being hard to debug and re-iterate fast on a program is the primary reason that programmers, in general,  prefer PyTorch over the older systems.  Using PyTorch, we would write the above program as following:</p>
271 272 273 274 275 276 277 278 279 280
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">W</span> <span class="o">=</span> <span class="n">tensor</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>

<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span> <span class="c1"># train for 1000 iterations</span>
    <span class="n">m</span> <span class="o">=</span> <span class="n">read_minibatch</span><span class="p">()</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">m</span><span class="p">[</span><span class="s2">&quot;image&quot;</span><span class="p">]</span>
    <span class="n">l</span> <span class="o">=</span> <span class="n">m</span><span class="p">[</span><span class="s2">&quot;label&quot;</span><span class="p">]</span>
    <span class="n">f</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">W</span><span class="p">)</span>
    <span class="n">s</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
    <span class="n">c</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">mse</span><span class="p">(</span><span class="n">l</span><span class="p">,</span> <span class="n">s</span><span class="p">)</span>
    <span class="n">backward</span><span class="p">()</span>
281

282 283 284
<span class="k">print</span> <span class="n">W</span> <span class="c1"># print the trained model parameters.</span>
</pre></div>
</div>
285
<p>We can see that the main difference is the moving the model configuration part (the first step) into the training loop.  This change would allow the mistakes in model configuration to be reported where they actually appear in the programming block.  This change also represents the model better, or its forward pass, by keeping the configuration process in the training loop.</p>
286 287 288
</div>
<div class="section" id="describe-arbitrary-models-for-the-future">
<span id="describe-arbitrary-models-for-the-future"></span><h2>Describe Arbitrary Models for the Future<a class="headerlink" href="#describe-arbitrary-models-for-the-future" title="永久链接至标题"></a></h2>
289 290
<p>Describing the process instead of the model also brings Fluid, the flexibility to define different non-standard models that haven&#8217;t been invented yet.</p>
<p>As we write out the program for the process, we can write an RNN as a loop, instead of an RNN as a layer or as an operator.  A PyTorch example would look like the following:</p>
291 292 293 294 295 296 297
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span>
    <span class="n">m</span> <span class="o">=</span> <span class="n">read_minibatch</span><span class="p">()</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">m</span><span class="p">[</span><span class="s2">&quot;sentence&quot;</span><span class="p">]</span>
    <span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">xrange</span> <span class="n">x</span><span class="o">.</span><span class="n">len</span><span class="p">():</span>
        <span class="n">h</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="o">=</span> <span class="n">the_step</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="n">t</span><span class="p">])</span>
</pre></div>
</div>
298
<p>With Fluid, the training loop and the RNN in the above program are not really Python loops, but just a &#8220;loop structure&#8221; provided by Fluid and implemented in C++ as the following:</p>
299 300 301 302 303 304 305 306 307
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">train_loop</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">While</span><span class="p">(</span><span class="n">cond</span><span class="p">)</span>
<span class="k">with</span> <span class="n">train_loop</span><span class="o">.</span><span class="n">block</span><span class="p">():</span>
  <span class="n">m</span> <span class="o">=</span> <span class="n">read_minibatch</span><span class="p">()</span>
  <span class="n">x</span> <span class="o">=</span> <span class="n">m</span><span class="p">[</span><span class="s2">&quot;sentence&quot;</span><span class="p">]</span>
  <span class="n">rnn</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">While</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
  <span class="k">with</span> <span class="n">rnn</span><span class="o">.</span><span class="n">block</span><span class="p">():</span>
    <span class="n">h</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="o">=</span> <span class="n">the_step</span><span class="p">(</span><span class="nb">input</span><span class="p">[</span><span class="n">t</span><span class="p">])</span>
</pre></div>
</div>
308 309
<p>An actual Fluid example is described  <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44">here</a>.</p>
<p>From the example, the Fluid programs look very similar to their PyTorch equivalent programs, except that Fluid&#8217;s loop structure, wrapped with Python&#8217;s <code class="docutils literal"><span class="pre">with</span></code> statement, could run much faster than just a Python loop.</p>
310 311 312 313
<p>We have more examples of the <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/if_else_op.md"><code class="docutils literal"><span class="pre">if-then-else</span></code></a> structure of Fluid.</p>
</div>
<div class="section" id="turing-completeness">
<span id="turing-completeness"></span><h2>Turing Completeness<a class="headerlink" href="#turing-completeness" title="永久链接至标题"></a></h2>
314
<p>In computability theory, a system of data-manipulation rules, such as a programming language, is said to be Turing complete if it can be used to simulate any Turing machine.  For a programming language, if it provides if-then-else and loop, it is Turing complete.  From the above examples, Fluid seems to be Turing complete; however, it is noteworthy to notice that there  is a slight difference between the <code class="docutils literal"><span class="pre">if-then-else</span></code> of Fluid and that of a programming language. The difference being that the former runs both of its branches and splits the input mini-batch into two &#8211; one for the True condition and another for the False condition. This hasn&#8217;t been researched in depth if this is equivalent to the <code class="docutils literal"><span class="pre">if-then-else</span></code> in programming languages that makes them Turing-complete.  Based on a conversation with <a class="reference external" href="https://research.google.com/pubs/104812.html">Yuang Yu</a>, it seems to be the case but this needs to be looked into in-depth.</p>
315 316 317
</div>
<div class="section" id="the-execution-of-a-fluid-program">
<span id="the-execution-of-a-fluid-program"></span><h2>The Execution of a Fluid Program<a class="headerlink" href="#the-execution-of-a-fluid-program" title="永久链接至标题"></a></h2>
318 319 320
<p>There are two ways to execute a Fluid program.  When a program is executed, it creates a protobuf message <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/paddle/framework/framework.proto#L145"><code class="docutils literal"><span class="pre">ProgramDesc</span></code></a> that describes the process and is conceptually like an <a class="reference external" href="https://en.wikipedia.org/wiki/Abstract_syntax_tree">abstract syntax tree</a>.</p>
<p>There is a C++ class <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h"><code class="docutils literal"><span class="pre">Executor</span></code></a>, which runs a <code class="docutils literal"><span class="pre">ProgramDesc</span></code>, similar to how an interpreter runs a Python program.</p>
<p>Fluid is moving towards the direction of a compiler, which is explain in more detail later in this article.</p>
321
</div>
322 323 324 325
<div class="section" id="backward-compatibility-of-fluid">
<span id="backward-compatibility-of-fluid"></span><h2>Backward Compatibility of Fluid<a class="headerlink" href="#backward-compatibility-of-fluid" title="永久链接至标题"></a></h2>
<p>Given all the advantages from the removal of the concept of a <em>model</em>, hardware manufacturers might still prefer the existence of the concept of a model, so it would be easier for them to support multiple frameworks all at once and could run a trained model during inference.  For example, Nervana, a startup company acquired by Intel, has been working on an XPU that reads the models in the format known as <a class="reference external" href="https://github.com/NervanaSystems/ngraph">n-graph</a>.  Similarly, <a class="reference external" href="https://www.movidius.com/">Movidius</a> is producing a mobile deep learning chip that reads and runs graphs of operators.  The well-known <a class="reference external" href="https://github.com/onnx/onnx">ONNX</a> is also a file format of graphs of operators.</p>
<p>For Fluid, we can write a converter that extracts the parts in the <code class="docutils literal"><span class="pre">ProgramDesc</span></code> protobuf message, converts them into a graph of operators, and exports the graph into the ONNX or n-graph format.</p>
326 327 328
</div>
<div class="section" id="towards-a-deep-learning-language-and-the-compiler">
<span id="towards-a-deep-learning-language-and-the-compiler"></span><h2>Towards a Deep Learning Language and the Compiler<a class="headerlink" href="#towards-a-deep-learning-language-and-the-compiler" title="永久链接至标题"></a></h2>
329
<p>We can change the <code class="docutils literal"><span class="pre">if-then-else</span></code> and loop structure a little bit in the above Fluid example programs, to make it into a new programming language, different than Python.</p>
330
<p>Even if we do not invent a new language, as long as we get the <code class="docutils literal"><span class="pre">ProgramDesc</span></code> message filled in, we can write a transpiler, which translates each invocation to an operator, into a C++ call to a kernel function of that operator. For example, a transpiler that weaves the CUDA kernels outputs an NVIDIA-friendly C++ program, which can be built using <code class="docutils literal"><span class="pre">nvcc</span></code>.  Another transpiler could generate MKL-friendly code that should be built using <code class="docutils literal"><span class="pre">icc</span></code> from Intel.  More interestingly, we can translate a Fluid program into its distributed version of two <code class="docutils literal"><span class="pre">ProgramDesc</span></code> messages, one for running on the trainer process, and the other one for the parameter server.  For more details of the last example, the <a class="reference internal" href="concurrent_programming.html"><span class="doc">concurrent programming design</span></a> document would be a good pointer.  The following figure explains the proposed two-stage process:</p>
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
<p><img alt="" src="../_images/fluid-compiler.png" /></p>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>