docker_install_cn.html 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>使用Docker安装运行 &mdash; PaddlePaddle  文档</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
  

  
  

  

  
  
    

  

  
  
27
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
28 29 30 31 32
  

  
  
        <link rel="index" title="索引"
33 34 35
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/>
36
        <link rel="up" title="安装与编译" href="index_cn.html"/>
37
        <link rel="next" title="从源码编译" href="build_from_source_cn.html"/>
38
        <link rel="prev" title="使用pip安装" href="pip_install_cn.html"/> 
39 40

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
41
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
42 43 44 45 46 47 48 49 50 51 52 53 54
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
55
  <script src="../_static/js/modernizr.min.js"></script>
56 57 58 59 60 61 62 63

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
64
      <a href="/"><img src="../_static/images/PP_w.png"></a>
65 66 67
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
87 88 89 90 91
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index_cn.html">安装与编译</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
92 93 94 95
</ul>

        
<div role="search">
96
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
113 114 115
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_cn.html">快速开始</a></li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
116 117
</ul>
</li>
118 119 120 121
<li class="toctree-l1 current"><a class="reference internal" href="index_cn.html">安装与编译</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="build_from_source_cn.html">从源码编译</a></li>
122 123
</ul>
</li>
124 125 126 127 128
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
129 130
</ul>
</li>
131 132 133 134 135 136
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
137
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中启动训练</a></li>
138
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
139
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_cn.html">Kubernetes on AWS</a></li>
140 141
</ul>
</li>
142 143
</ul>
</li>
144 145 146 147
<li class="toctree-l2"><a class="reference internal" href="../howto/capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
148 149
</ul>
</li>
150
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_cn.html">RNN模型</a><ul>
151 152 153 154
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
155 156
</ul>
</li>
157
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能调优</a></li>
158 159
</ul>
</li>
160 161 162
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_cn.html">如何贡献文档</a></li>
163 164
</ul>
</li>
165 166 167 168 169 170
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
171 172
</ul>
</li>
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="index_cn.html">安装与编译</a> > </li>
      
195
    <li>使用Docker安装运行</li>
196 197 198 199 200 201 202 203
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
204 205
  <div class="section" id="docker">
<h1>使用Docker安装运行<a class="headerlink" href="#docker" title="永久链接至标题"></a></h1>
206 207 208 209 210 211 212 213
<p>使用Docker安装和运行PaddlePaddle可以无需考虑依赖环境即可运行。并且也可以在Windows的docker中运行。
您可以在 <a class="reference external" href="https://docs.docker.com/get-started/">Docker官网</a> 获得基本的Docker安装和使用方法。</p>
<p>如果您在使用Windows,可以参考
<a class="reference external" href="https://docs.docker.com/toolbox/toolbox_install_windows/">这篇</a>
教程,完成在Windows上安装和使用Docker。</p>
<p>在了解Docker的基本使用方法之后,即可开始下面的步骤:</p>
<div class="section" id="paddlepaddledocker">
<span id="docker-pull"></span><h2>获取PaddlePaddle的Docker镜像<a class="headerlink" href="#paddlepaddledocker" title="永久链接至标题"></a></h2>
214
<p>执行下面的命令获取最新的PaddlePaddle Docker镜像,版本为cpu_avx_mkl:</p>
215 216
<blockquote>
<div><div class="highlight-bash"><div class="highlight"><pre><span></span>docker pull paddlepaddle/paddle
217 218
</pre></div>
</div>
219 220 221
</div></blockquote>
<p>对于国内用户,我们提供了加速访问的镜像源:</p>
<blockquote>
222
<div><div class="highlight-bash"><div class="highlight"><pre><span></span>docker pull docker.paddlepaddlehub.com/paddle
223 224
</pre></div>
</div>
225
</div></blockquote>
226
<p>下载GPU版本(cuda8.0_cudnn5_avx_mkl)的Docker镜像:</p>
227 228
<blockquote>
<div><div class="highlight-bash"><div class="highlight"><pre><span></span>docker pull paddlepaddle/paddle:latest-gpu
229
docker pull docker.paddlepaddlehub.com/paddle:latest-gpu
230 231
</pre></div>
</div>
232 233 234 235 236 237 238
</div></blockquote>
<p>选择下载使用不同的BLAS库的Docker镜像:</p>
<blockquote>
<div><div class="highlight-bash"><div class="highlight"><pre><span></span><span class="c1"># 默认是使用MKL的镜像</span>
docker pull paddlepaddle/paddle
<span class="c1"># 使用OpenBLAS的镜像</span>
docker pull paddlepaddle/paddle:latest-openblas
239 240
</pre></div>
</div>
241 242 243 244 245
</div></blockquote>
<p>下载指定版本的Docker镜像,可以从 <a class="reference external" href="https://hub.docker.com/r/paddlepaddle/paddle/tags/">DockerHub网站</a> 获取可选的tag,并执行下面的命令:</p>
<blockquote>
<div><div class="highlight-bash"><div class="highlight"><pre><span></span>docker pull paddlepaddle/paddle:<span class="o">[</span>tag<span class="o">]</span>
<span class="c1"># 比如:</span>
246
docker pull docker.paddlepaddlehub.com/paddle:0.11.0-gpu
247 248
</pre></div>
</div>
249
</div></blockquote>
250
</div>
251 252
<div class="section" id="dockerpaddlepaddle">
<span id="docker-run"></span><h2>在Docker中执行PaddlePaddle训练程序<a class="headerlink" href="#dockerpaddlepaddle" title="永久链接至标题"></a></h2>
253 254 255 256 257 258
<p>假设您已经在当前目录(比如在/home/work)编写了一个PaddlePaddle的程序 <code class="code docutils literal"><span class="pre">train.py</span></code> (可以参考
<a class="reference external" href="http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.cn.html">PaddlePaddleBook</a>
编写),就可以使用下面的命令开始执行训练:</p>
<blockquote>
<div><div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">cd</span> /home/work
docker run -it -v <span class="nv">$PWD</span>:/work paddlepaddle/paddle /work/train.py
259 260
</pre></div>
</div>
261 262 263 264 265 266 267 268 269
</div></blockquote>
<p>上述命令中, <code class="code docutils literal"><span class="pre">-it</span></code> 参数说明容器已交互式运行; <code class="code docutils literal"><span class="pre">-v</span> <span class="pre">$PWD:/work</span></code>
指定将当前路径(Linux中$PWD变量会展开为当前路径的绝对路径)挂载到容器内部的 <code class="code docutils literal"><span class="pre">/work</span></code>
目录; <code class="code docutils literal"><span class="pre">paddlepaddle/paddle</span></code> 指定需要使用的容器; 最后 <code class="code docutils literal"><span class="pre">/work/train.py</span></code>
为容器内执行的命令,即运行训练程序。</p>
<p>当然,您也可以进入到Docker容器中,以交互式的方式执行或调试您的代码:</p>
<blockquote>
<div></div></blockquote>
<p><strong>注:PaddlePaddle Docker镜像为了减小体积,默认没有安装vim,您可以在容器中执行</strong> <code class="code docutils literal"><span class="pre">apt-get</span> <span class="pre">install</span> <span class="pre">-y</span> <span class="pre">vim</span></code> <strong>安装后,在容器中编辑代码。</strong></p>
270
</div>
271 272 273 274 275 276
<div class="section" id="dockerpaddlepaddle-book">
<span id="docker-run-book"></span><h2>使用Docker启动PaddlePaddle Book教程<a class="headerlink" href="#dockerpaddlepaddle-book" title="永久链接至标题"></a></h2>
<p>使用Docker可以快速在本地启动一个包含了PaddlePaddle官方Book教程的Jupyter Notebook,可以通过网页浏览。
PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Notebook。
如果您想要更深入了解deep learning,PaddlePaddle Book一定是您最好的选择。
大家可以通过它阅读教程,或者制作和分享带有代码、公式、图表、文字的交互式文档。</p>
277
<p>我们提供可以直接运行PaddlePaddle Book的Docker镜像,直接运行:</p>
278 279
<blockquote>
<div><div class="highlight-bash"><div class="highlight"><pre><span></span>docker run -p <span class="m">8888</span>:8888 paddlepaddle/book
280 281
</pre></div>
</div>
282
</div></blockquote>
283 284 285
<p>国内用户可以使用下面的镜像源来加速访问:</p>
<blockquote>
<div></div></blockquote>
286
<p>然后在浏览器中输入以下网址:</p>
287 288
<blockquote>
<div><div class="highlight-text"><div class="highlight"><pre><span></span>http://localhost:8888/
289 290
</pre></div>
</div>
291
</div></blockquote>
292 293
<p>就这么简单,享受您的旅程!</p>
</div>
294 295 296 297 298 299
<div class="section" id="dockergpu">
<span id="docker-run-gpu"></span><h2>使用Docker执行GPU训练<a class="headerlink" href="#dockergpu" title="永久链接至标题"></a></h2>
<p>为了保证GPU驱动能够在镜像里面正常运行,我们推荐使用
<a class="reference external" href="https://github.com/NVIDIA/nvidia-docker">nvidia-docker</a> 来运行镜像。
请不要忘记提前在物理机上安装GPU最新驱动。</p>
<blockquote>
300
<div><div class="highlight-bash"><div class="highlight"><pre><span></span>nvidia-docker run -it -v <span class="nv">$PWD</span>:/work paddlepaddle/paddle:latest-gpu /bin/bash
301 302
</pre></div>
</div>
303 304 305 306 307
</div></blockquote>
<p><strong>注: 如果没有安装nvidia-docker,可以尝试以下的方法,将CUDA库和Linux设备挂载到Docker容器内:</strong></p>
<blockquote>
<div><div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">CUDA_SO</span><span class="o">=</span><span class="s2">&quot;</span><span class="k">$(</span><span class="se">\l</span>s /usr/lib64/libcuda* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;-v {}:{}&#39;</span><span class="k">)</span><span class="s2"> </span><span class="k">$(</span><span class="se">\l</span>s /usr/lib64/libnvidia* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;-v {}:{}&#39;</span><span class="k">)</span><span class="s2">&quot;</span>
<span class="nb">export</span> <span class="nv">DEVICES</span><span class="o">=</span><span class="k">$(</span><span class="se">\l</span>s /dev/nvidia* <span class="p">|</span> xargs -I<span class="o">{}</span> <span class="nb">echo</span> <span class="s1">&#39;--device {}:{}&#39;</span><span class="k">)</span>
308
docker run <span class="si">${</span><span class="nv">CUDA_SO</span><span class="si">}</span> <span class="si">${</span><span class="nv">DEVICES</span><span class="si">}</span> -it paddlepaddle/paddle:latest-gpu
309
</pre></div>
310
</div>
311 312 313 314
</div></blockquote>
<p><strong>关于AVX:</strong></p>
<p>AVX是一种CPU指令集,可以加速PaddlePaddle的计算。最新的PaddlePaddle Docker镜像默认
是开启AVX编译的,所以,如果您的电脑不支持AVX,需要单独
315
<a class="reference external" href="./build_from_source_cn.html">编译</a> PaddlePaddle为no-avx版本。</p>
316 317 318
<p>以下指令能检查Linux电脑是否支持AVX:</p>
<blockquote>
<div><div class="highlight-bash"><div class="highlight"><pre><span></span><span class="k">if</span> cat /proc/cpuinfo <span class="p">|</span> grep -i avx<span class="p">;</span> <span class="k">then</span> <span class="nb">echo</span> Yes<span class="p">;</span> <span class="k">else</span> <span class="nb">echo</span> No<span class="p">;</span> <span class="k">fi</span>
319 320
</pre></div>
</div>
321 322
</div></blockquote>
<p>如果输出是No,就需要选择使用no-AVX的镜像</p>
323 324 325 326 327 328 329 330 331 332
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
333
        <a href="build_from_source_cn.html" class="btn btn-neutral float-right" title="从源码编译" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
334 335
      
      
336
        <a href="pip_install_cn.html" class="btn btn-neutral" title="使用pip安装" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
366
            URL_ROOT:'../',
367 368 369
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
370 371
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
372 373
        };
    </script>
374 375 376 377
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
378
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
379 380 381 382 383
       
  

  
  
384
    <script type="text/javascript" src="../_static/js/theme.js"></script>
385 386 387 388
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
389
  <script src="../_static/js/paddle_doc_init.js"></script> 
390 391

</body>
392
</html>