refactorization.html 34.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: Refactorization Overview &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../genindex.html"/>
        <link rel="search" title="Search" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
85
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_en.html">Install and Build</a></li>
86
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../dev/index_en.html">Development</a></li>
88
<li class="toctree-l1"><a class="reference internal" href="../faq/index_en.html">FAQ</a></li>
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
111
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_en.html">Quick Start</a></li>
112
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_en.html">Basic Concept</a></li>
113 114
</ul>
</li>
115
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_en.html">Install and Build</a><ul>
116
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_en.html">Install using pip</a></li>
117 118
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_en.html">Build from Sources</a></li>
119 120 121
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
122 123 124 125
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
126 127
</ul>
</li>
128 129 130 131
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_en.html">Preparations</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_en.html">Command-line arguments</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_en.html">Use different clusters</a><ul>
132 133 134 135
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_en.html">Fabric</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_en.html">OpenMPI</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_en.html">Kubernetes</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_en.html">Kubernetes on AWS</a></li>
136 137
</ul>
</li>
138 139 140 141
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_en.html">RNN Configuration</a></li>
142 143 144
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/recurrent_group_en.html">Recurrent Group Tutorial</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hierarchical_layer_en.html">Layers supporting hierarchical sequence as input</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hrnn_rnn_api_compare_en.html">API comparision between RNN and hierarchical RNN</a></li>
145 146 147 148 149
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
150 151 152 153 154
<li class="toctree-l1"><a class="reference internal" href="../dev/index_en.html">Development</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_en.html">Contribute Documentation</a></li>
</ul>
</li>
155 156 157 158 159 160 161 162
<li class="toctree-l1"><a class="reference internal" href="../faq/index_en.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_en.html">Install, Build and Unit test</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_en.html">Model Configuration</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_en.html">Parameter Setting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_en.html">Local Training and Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_en.html">Cluster Training and Prediction</a></li>
</ul>
</li>
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Design Doc: Refactorization Overview</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-refactorization-overview">
<span id="design-doc-refactorization-overview"></span><h1>Design Doc: Refactorization Overview<a class="headerlink" href="#design-doc-refactorization-overview" title="Permalink to this headline"></a></h1>
194
<p>The goals of refactoring include:</p>
195
<ol class="simple">
196 197 198 199
<li>Making it easy for external contributors to write new elementary computation operations.</li>
<li>Making the codebase clean and readable.</li>
<li>Designing a new computation representation &#8211; a computation graph of operators and variables.</li>
<li>Implementing auto-scalability and auto fault recoverable distributed computing with the help of computation graphs.</li>
200 201 202 203
</ol>
<div class="section" id="computation-graphs">
<span id="computation-graphs"></span><h2>Computation Graphs<a class="headerlink" href="#computation-graphs" title="Permalink to this headline"></a></h2>
<ol class="simple">
204 205 206
<li>PaddlePaddle represents the computation, training and inference of Deep Learning models, by computation graphs.</li>
<li>Please refer to <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/graph.md">computation graphs</a> for a concrete example.</li>
<li>Users write Python programs to describe the graphs and run them (locally or remotely).</li>
207
<li>A graph is composed of <em>variables</em> and <em>operators</em>.</li>
208 209
<li>The description of graphs must be serializable/deserializable, so that:<ol>
<li>It can be sent to the cloud for distributed execution, and</li>
210
<li>It can be sent to clients for mobile or enterprise deployment.</li>
211 212
</ol>
</li>
213 214
<li>The Python program does two things<ol>
<li><em>Compilation</em> runs a Python program to generate a protobuf message representation of the graph and send it to<ol>
215 216 217 218 219
<li>the C++ library <code class="docutils literal"><span class="pre">libpaddle.so</span></code> for local execution,</li>
<li>the master process of a distributed training job for training, or</li>
<li>the server process of a Kubernetes serving job for distributed serving.</li>
</ol>
</li>
220
<li><em>Execution</em> executes the graph by constructing instances of class <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24"><code class="docutils literal"><span class="pre">Variable</span></code></a> and <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L70"><code class="docutils literal"><span class="pre">OperatorBase</span></code></a>, according to the protobuf message.</li>
221 222 223 224
</ol>
</li>
</ol>
</div>
225 226
<div class="section" id="description-and-realization-of-computation-graph">
<span id="description-and-realization-of-computation-graph"></span><h2>Description and Realization of Computation Graph<a class="headerlink" href="#description-and-realization-of-computation-graph" title="Permalink to this headline"></a></h2>
227
<p>At compile time, the Python program generates a protobuf message representation of the graph, or a description of the graph.</p>
228
<p>At runtime, the C++ program realizes the graph and runs it.</p>
229 230 231 232 233
<p>| | Representation (protobuf messages) | Realization (C++ class objects) |
|&#8212;|&#8212;|&#8212;|
|Data|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107">VarDesc</a>|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24">Variable</a>|
|Operation|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35">OpDesc</a>|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64">Operator</a>|
|Block|BlockDesc|Block|</p>
234
<p>The word <em>graph</em> is interchangeable with <em>block</em> in this document.  A graph consists of computation steps and local variables similar to a C++/Java program block, or a pair of parentheses(<code class="docutils literal"><span class="pre">{</span></code> and <code class="docutils literal"><span class="pre">}</span></code>).</p>
235 236 237 238
</div>
<div class="section" id="compilation-and-execution">
<span id="compilation-and-execution"></span><h2>Compilation and Execution<a class="headerlink" href="#compilation-and-execution" title="Permalink to this headline"></a></h2>
<ol class="simple">
239
<li>Run a Python program to describe the graph.  In particular, the Python application program does the following:<ol>
240 241 242 243 244 245
<li>Create <code class="docutils literal"><span class="pre">VarDesc</span></code> to represent local/intermediate variables,</li>
<li>Create operators and set attributes,</li>
<li>Validate attribute values,</li>
<li>Infer the type and the shape of variables,</li>
<li>Plan memory-reuse for variables,</li>
<li>Generate the backward graph</li>
246 247
<li>Add optimization operators to the computation graph.</li>
<li>Optionally, split the graph for distributed training.</li>
248 249
</ol>
</li>
250
<li>The invocation of <code class="docutils literal"><span class="pre">train</span></code> or <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/inference.py#L108"><code class="docutils literal"><span class="pre">infer</span></code></a> methods in the Python program does the following:<ol>
251
<li>Create a new Scope instance in the <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/scope.md">scope hierarchy</a> for each run of a block,<ol>
252 253 254 255
<li>realize local variables defined in the BlockDesc message in the new scope,</li>
<li>a scope is similar to the stack frame in programming languages,</li>
</ol>
</li>
256
<li>Create an instance of class <code class="docutils literal"><span class="pre">Block</span></code>, in which,<ol>
257 258 259
<li>realize operators in the BlockDesc message,</li>
</ol>
</li>
260
<li>Run the Block by calling<ol>
261 262 263 264 265 266 267 268 269 270 271 272 273
<li><code class="docutils literal"><span class="pre">Block::Eval(vector&lt;Variable&gt;*</span> <span class="pre">targets)</span></code> for forward and backward computations, or</li>
<li><code class="docutils literal"><span class="pre">Block::Eval(vector&lt;Operator&gt;*</span> <span class="pre">targets)</span></code> for optimization.</li>
</ol>
</li>
</ol>
</li>
</ol>
</div>
<div class="section" id="intermediate-representation-ir">
<span id="intermediate-representation-ir"></span><h2>Intermediate Representation (IR)<a class="headerlink" href="#intermediate-representation-ir" title="Permalink to this headline"></a></h2>
<div class="highlight-text"><div class="highlight"><pre><span></span>Compile Time -&gt; IR -&gt; Runtime
</pre></div>
</div>
274 275
<div class="section" id="benefits-of-ir">
<span id="benefits-of-ir"></span><h3>Benefits of IR<a class="headerlink" href="#benefits-of-ir" title="Permalink to this headline"></a></h3>
276 277 278 279 280 281
<ul>
<li><p class="first">Optimization</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Compile Time -&gt; IR -&gt; Optimized IR -&gt; Runtime
</pre></div>
</div>
</li>
282
<li><p class="first">Automatically send partitioned IR to different nodes.</p>
283
<ul>
284
<li><p class="first">Automatic Data Parallelism</p>
285 286 287 288 289 290 291 292 293
<div class="highlight-text"><div class="highlight"><pre><span></span>Compile Time
|-&gt; Single GPU IR
    |-&gt; [trainer-IR-0, trainer-IR-1, pserver-IR]
        |-&gt; Node-0 (runs trainer-IR-0)
        |-&gt; Node-1 (runs trainer-IR-1)
        |-&gt; Node-2 (runs pserver-IR)
</pre></div>
</div>
</li>
294
<li><p class="first">Automatic Model Parallelism (planned for future)</p>
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<hr class="docutils" />
<div class="section" id="operator-opwithkernel-opkernel">
<span id="operator-opwithkernel-opkernel"></span><h1>Operator/OpWithKernel/OpKernel<a class="headerlink" href="#operator-opwithkernel-opkernel" title="Permalink to this headline"></a></h1>
<p><img alt="class_diagram" src="http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot" /></p>
</div>
<hr class="docutils" />
<div class="section" id="operator">
<span id="operator"></span><h1>Operator<a class="headerlink" href="#operator" title="Permalink to this headline"></a></h1>
<p><img alt="class_diagram" src="http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot" /></p>
<ul class="simple">
312
<li><code class="docutils literal"><span class="pre">Operator</span></code> is the fundamental building block of the user interface.<ul>
313 314
<li>Operator stores input/output variable names and attributes.</li>
<li>The <code class="docutils literal"><span class="pre">InferShape</span></code> interface is used to infer the shape of the output variables based on the shapes of the input variables.</li>
315
<li>Use <code class="docutils literal"><span class="pre">Run</span></code> to compute the <code class="docutils literal"><span class="pre">output</span></code> variables from the <code class="docutils literal"><span class="pre">input</span></code> variables.</li>
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="opwithkernel-kernel">
<span id="opwithkernel-kernel"></span><h1>OpWithKernel/Kernel<a class="headerlink" href="#opwithkernel-kernel" title="Permalink to this headline"></a></h1>
<p><img alt="class_diagram" src="http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot" /></p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">OpWithKernel</span></code> inherits <code class="docutils literal"><span class="pre">Operator</span></code>.</li>
<li><code class="docutils literal"><span class="pre">OpWithKernel</span></code> contains a Kernel map.<ul>
<li><code class="docutils literal"><span class="pre">OpWithKernel::Run</span></code> get device&#8217;s kernel, and invoke <code class="docutils literal"><span class="pre">OpKernel::Compute</span></code>.</li>
<li><code class="docutils literal"><span class="pre">OpKernelKey</span></code> is the map key. Only device place now, but may be data type later.</li>
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="why-separate-kernel-and-operator">
<span id="why-separate-kernel-and-operator"></span><h1>Why separate Kernel and Operator<a class="headerlink" href="#why-separate-kernel-and-operator" title="Permalink to this headline"></a></h1>
<ul class="simple">
<li>Separate GPU and CPU code.<ul>
338
<li>Make Paddle capable of running without GPU.</li>
339 340
</ul>
</li>
341 342
<li>Make one operator (which is a user interface) and create many implementations.<ul>
<li>For example, same multiplication op can have different implementations kernels such as FP16 kernel, FP32 kernel, MKL, eigen kernel.</li>
343 344 345 346 347 348 349 350 351 352
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="libraries-for-kernel-development">
<span id="libraries-for-kernel-development"></span><h1>Libraries for Kernel development<a class="headerlink" href="#libraries-for-kernel-development" title="Permalink to this headline"></a></h1>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">Eigen::Tensor</span></code> contains basic math and element-wise functions.<ul>
<li>Note that <code class="docutils literal"><span class="pre">Eigen::Tensor</span></code> has broadcast implementation.</li>
353
<li>Limit the number of <code class="docutils literal"><span class="pre">tensor.device(dev)</span> <span class="pre">=</span></code> in your code.</li>
354 355
</ul>
</li>
356 357
<li><code class="docutils literal"><span class="pre">thrust::transform</span></code> and <code class="docutils literal"><span class="pre">std::transform</span></code>.<ul>
<li><code class="docutils literal"><span class="pre">thrust</span></code> has the same API as C++ standard library. Using <code class="docutils literal"><span class="pre">transform</span></code>, one can quickly implement customized element-wise kernels.</li>
358
<li><code class="docutils literal"><span class="pre">thrust</span></code>, in addition, supports more complex APIs, like <code class="docutils literal"><span class="pre">scan</span></code>, <code class="docutils literal"><span class="pre">reduce</span></code>, <code class="docutils literal"><span class="pre">reduce_by_key</span></code>.</li>
359 360 361
</ul>
</li>
<li>Hand-writing <code class="docutils literal"><span class="pre">GPUKernel</span></code> and <code class="docutils literal"><span class="pre">CPU</span></code> code<ul>
362
<li>Do not write in header (<code class="docutils literal"><span class="pre">.h</span></code>) files. CPU Kernel should be in cpp source (<code class="docutils literal"><span class="pre">.cc</span></code>) and GPU kernels should be in cuda (<code class="docutils literal"><span class="pre">.cu</span></code>) files. (GCC cannot compile GPU code.)</li>
363 364 365 366 367
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
368 369
<div class="section" id="operator-registration">
<span id="operator-registration"></span><h1>Operator Registration<a class="headerlink" href="#operator-registration" title="Permalink to this headline"></a></h1>
370 371
<div class="section" id="why-is-registration-necessary">
<span id="why-is-registration-necessary"></span><h2>Why is registration necessary?<a class="headerlink" href="#why-is-registration-necessary" title="Permalink to this headline"></a></h2>
372 373
<p>We need a method to build mappings between Op type names and Op classes.</p>
</div>
374 375 376
<div class="section" id="how-is-registration-implemented">
<span id="how-is-registration-implemented"></span><h2>How is registration implemented?<a class="headerlink" href="#how-is-registration-implemented" title="Permalink to this headline"></a></h2>
<p>Maintaining a map, whose key is the type name and the value is the corresponding Op constructor.</p>
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
</div>
</div>
<hr class="docutils" />
<div class="section" id="the-registry-map">
<span id="the-registry-map"></span><h1>The Registry Map<a class="headerlink" href="#the-registry-map" title="Permalink to this headline"></a></h1>
<div class="section" id="opinfomap">
<span id="opinfomap"></span><h2><code class="docutils literal"><span class="pre">OpInfoMap</span></code><a class="headerlink" href="#opinfomap" title="Permalink to this headline"></a></h2>
<p><code class="docutils literal"><span class="pre">op_type(string)</span></code> -&gt; <code class="docutils literal"><span class="pre">OpInfo</span></code></p>
<p><code class="docutils literal"><span class="pre">OpInfo</span></code>:</p>
<ul class="simple">
<li><strong><code class="docutils literal"><span class="pre">creator</span></code></strong>: The Op constructor.</li>
<li><strong><code class="docutils literal"><span class="pre">grad_op_type</span></code></strong>: The type of the gradient Op.</li>
<li><strong><code class="docutils literal"><span class="pre">proto</span></code></strong>: The Op&#8217;s Protobuf, including inputs, outputs and required attributes.</li>
<li><strong><code class="docutils literal"><span class="pre">checker</span></code></strong>: Used to check attributes.</li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="related-concepts">
<span id="related-concepts"></span><h1>Related Concepts<a class="headerlink" href="#related-concepts" title="Permalink to this headline"></a></h1>
<div class="section" id="op-maker">
<span id="op-maker"></span><h2>Op_Maker<a class="headerlink" href="#op-maker" title="Permalink to this headline"></a></h2>
399
<p>It&#8217;s constructor takes <code class="docutils literal"><span class="pre">proto</span></code> and <code class="docutils literal"><span class="pre">checker</span></code>. They are completed during Op_Maker&#8217;s construction. (<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37">ScaleOpMaker</a>)</p>
400 401 402 403 404 405 406 407 408 409
</div>
<div class="section" id="register-macros">
<span id="register-macros"></span><h2>Register Macros<a class="headerlink" href="#register-macros" title="Permalink to this headline"></a></h2>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">REGISTER_OP</span><span class="p">(</span><span class="n">op_type</span><span class="p">,</span> <span class="n">op_class</span><span class="p">,</span> <span class="n">op_maker_class</span><span class="p">,</span> <span class="n">grad_op_type</span><span class="p">,</span> <span class="n">grad_op_class</span><span class="p">)</span>
<span class="n">REGISTER_OP_WITHOUT_GRADIENT</span><span class="p">(</span><span class="n">op_type</span><span class="p">,</span> <span class="n">op_class</span><span class="p">,</span> <span class="n">op_maker_class</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<hr class="docutils" />
410 411
<div class="section" id="registration-process">
<span id="registration-process"></span><h1>Registration Process<a class="headerlink" href="#registration-process" title="Permalink to this headline"></a></h1>
412
<ol class="simple">
413 414 415
<li>Write an Op class and its gradient Op class, if required.</li>
<li>Write an Op maker class. In the constructor of this class, describe the inputs, outputs and attributes of the operator.</li>
<li>Invoke the macro <code class="docutils literal"><span class="pre">REGISTER_OP</span></code>. This macro will<ol>
416
<li>Call maker class to complete <code class="docutils literal"><span class="pre">proto</span></code> and <code class="docutils literal"><span class="pre">checker</span></code></li>
417
<li>Using the completed <code class="docutils literal"><span class="pre">proto</span></code> and <code class="docutils literal"><span class="pre">checker</span></code>, it will add a new key-value pair to the <code class="docutils literal"><span class="pre">OpInfoMap</span></code></li>
418 419 420 421 422 423 424 425 426 427
</ol>
</li>
</ol>
</div>
<hr class="docutils" />
<div class="section" id="backward-module-1-2">
<span id="backward-module-1-2"></span><h1>Backward Module (1/2)<a class="headerlink" href="#backward-module-1-2" title="Permalink to this headline"></a></h1>
<div class="section" id="create-backward-operator">
<span id="create-backward-operator"></span><h2>Create Backward Operator<a class="headerlink" href="#create-backward-operator" title="Permalink to this headline"></a></h2>
<ul class="simple">
428
<li>Mapping from forward Op to backward Op
429 430 431 432 433 434 435 436 437 438
<img alt="backward" src="https://gist.githubusercontent.com/dzhwinter/a6fbd4623ee76c459f7f94591fd1abf0/raw/61026ab6e518e66bde66a889bc42557a1fccff33/backward.png" /></li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="backward-module-2-2">
<span id="backward-module-2-2"></span><h1>Backward Module (2/2)<a class="headerlink" href="#backward-module-2-2" title="Permalink to this headline"></a></h1>
<div class="section" id="build-backward-network">
<span id="build-backward-network"></span><h2>Build Backward Network<a class="headerlink" href="#build-backward-network" title="Permalink to this headline"></a></h2>
<ul class="simple">
439 440
<li><strong>Input</strong>: a graph of forward operators</li>
<li><strong>Output</strong>: a graph of backward operators</li>
441 442 443 444
<li><strong>Corner cases in construction</strong><ul>
<li>Shared Variables =&gt; insert an <code class="docutils literal"><span class="pre">Add</span></code> operator to combine gradients</li>
<li>No Gradient =&gt; insert a <code class="docutils literal"><span class="pre">fill_zero_grad</span></code> operator</li>
<li>Recursive NetOp =&gt; call <code class="docutils literal"><span class="pre">Backward</span></code> recursively</li>
445
<li>RNN Op =&gt; recursively call <code class="docutils literal"><span class="pre">Backward</span></code> on stepnet</li>
446
<li>RNN Op =&gt; recursively call <code class="docutils literal"><span class="pre">Backward</span></code> on stepnet</li>
447 448 449 450 451 452 453 454 455 456 457
</ul>
</li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="scope-variable-tensor">
<span id="scope-variable-tensor"></span><h1>Scope, Variable, Tensor<a class="headerlink" href="#scope-variable-tensor" title="Permalink to this headline"></a></h1>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">Tensor</span></code> is an n-dimension array with type.<ul>
<li>Only dims and data pointers are stored in <code class="docutils literal"><span class="pre">Tensor</span></code>.</li>
458 459
<li>All operations on <code class="docutils literal"><span class="pre">Tensor</span></code> are written in <code class="docutils literal"><span class="pre">Operator</span></code> or global functions.</li>
<li>Variable length Tensor design <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md">LoDTensor</a></li>
460 461
</ul>
</li>
462
<li><code class="docutils literal"><span class="pre">Variable</span></code> instances are the inputs and the outputs of an operator, not just <code class="docutils literal"><span class="pre">Tensor</span></code>.<ul>
463
<li><code class="docutils literal"><span class="pre">step_scopes</span></code> in RNN is a variable and not a tensor.</li>
464 465
</ul>
</li>
466 467
<li><code class="docutils literal"><span class="pre">Scope</span></code> is where variables are stored.<ul>
<li>map&lt;string <code class="docutils literal"><span class="pre">var</span> <span class="pre">name</span></code>, Variable&gt;</li>
468
<li><code class="docutils literal"><span class="pre">Scope</span></code> has a hierarchical structure. The local scope can get variables from its parent scope.</li>
469 470 471 472 473 474 475
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="block-in-design">
<span id="block-in-design"></span><h1>Block (in design)<a class="headerlink" href="#block-in-design" title="Permalink to this headline"></a></h1>
476 477
<div class="section" id="the-difference-between-original-rnnop-and-block">
<span id="the-difference-between-original-rnnop-and-block"></span><h2>the difference between original RNNOp and Block<a class="headerlink" href="#the-difference-between-original-rnnop-and-block" title="Permalink to this headline"></a></h2>
478
<ul class="simple">
479 480 481 482 483
<li>As an operator is more intuitive than <code class="docutils literal"><span class="pre">RNNOp</span></code>,</li>
<li>Offers a new interface <code class="docutils literal"><span class="pre">Eval(targets)</span></code> to deduce the minimal block to <code class="docutils literal"><span class="pre">Run</span></code>,</li>
<li>Fits the compile-time/ runtime separation design paradigm.<ul>
<li>During the compilation, <code class="docutils literal"><span class="pre">SymbolTable</span></code> stores <code class="docutils literal"><span class="pre">VarDesc</span></code>s and <code class="docutils literal"><span class="pre">OpDesc</span></code>s and serialize to a <code class="docutils literal"><span class="pre">BlockDesc</span></code></li>
<li>When graph executes, a Block with <code class="docutils literal"><span class="pre">BlockDesc</span></code> is passed. It then creates <code class="docutils literal"><span class="pre">Op</span></code> and <code class="docutils literal"><span class="pre">Var</span></code> instances and then invokes <code class="docutils literal"><span class="pre">Run</span></code>.</li>
484 485 486 487 488 489 490 491 492
</ul>
</li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="milestone">
<span id="milestone"></span><h1>Milestone<a class="headerlink" href="#milestone" title="Permalink to this headline"></a></h1>
<ul class="simple">
493 494 495
<li>Take Paddle/books as the main line, the requirement of the models motivates framework refactoring,</li>
<li>Model migration<ul>
<li>Framework development gives <strong>priority support</strong> to model migration, for example,<ul>
496 497 498 499
<li>the MNIST demo needs a Python interface,</li>
<li>the RNN models require the framework to support <code class="docutils literal"><span class="pre">LoDTensor</span></code>.</li>
</ul>
</li>
500 501 502
<li>Determine some timelines,</li>
<li>Frequently used Ops need to be migrated first,</li>
<li>Different models can be migrated in parallel.</li>
503 504
</ul>
</li>
505 506
<li>Improve the framework at the same time</li>
<li>Accept imperfection, concentrate on solving the specific problem at the right price.</li>
507 508 509 510 511 512
</ul>
</div>
<hr class="docutils" />
<div class="section" id="control-the-migration-quality">
<span id="control-the-migration-quality"></span><h1>Control the migration quality<a class="headerlink" href="#control-the-migration-quality" title="Permalink to this headline"></a></h1>
<ul class="simple">
513
<li>Compare the performance of migrated models with old ones.</li>
514
<li>Follow the google C++ style guide.</li>
515 516 517 518
<li>Build the automatic workflow of generating Python/C++ documentations.<ul>
<li>The documentation of layers and ops should be written inside the code.</li>
<li>Take the documentation quality into account when submitting pull requests.</li>
<li>Preview the documentations, read and improve them from a user&#8217;s perspective.</li>
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
</ul>
</li>
</ul>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>