meshgrid_grad_kernel_impl.h 3.4 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/core/dense_tensor.h"
18
#include "paddle/phi/core/macros.h"
H
hong 已提交
19 20
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
21
#include "paddle/phi/kernels/meshgrid_grad_kernel.h"
H
hong 已提交
22 23 24 25
namespace phi {

template <typename T, typename Context, int Rank>
void MeshgridBackward(const Context& ctx,
26
                      const std::vector<const DenseTensor*>& ins UNUSED,
H
hong 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
                      const std::vector<const DenseTensor*>& out_grad,
                      std::vector<DenseTensor*> outs) {
  int n = out_grad.size();
  auto out_dims = out_grad[0]->dims();

  for (int i = 0; i < n; i++) {
    ctx.template Alloc<T>(outs[i]);
    auto out_grad_tmp = EigenVector<T>::Flatten(*out_grad[i]);
    auto in_grad = EigenVector<T>::Flatten(*outs[i]);

    std::vector<int> reduce_dims_vec;
    std::vector<int> reshape_dims_vec;
    for (int j = 0; j < n; j++) {
      reduce_dims_vec.push_back(reshape_dims_vec.size());
      if (j == i) {
        reshape_dims_vec.push_back(1);
        reshape_dims_vec.push_back(out_dims[j]);
      } else {
        reshape_dims_vec.push_back(out_dims[j]);
        reshape_dims_vec.push_back(1);
      }
    }

    Eigen::DSizes<Eigen::DenseIndex, Rank> reduce_dims;
    for (int k = 0; k < n; k++) {
      reduce_dims[k] = reduce_dims_vec[k];
    }

    Eigen::DSizes<Eigen::DenseIndex, Rank * 2> reshape_dims;
    for (int k = 0; k < n * 2; k++) {
      reshape_dims[k] = reshape_dims_vec[k];
    }

    auto& place = *ctx.eigen_device();
    funcs::EigenBroadcastGrad<std::decay_t<decltype(place)>, T, Rank>::Eval(
        place, in_grad, out_grad_tmp, reduce_dims, reshape_dims);
  }
}

template <typename T, typename Context>
void MeshgridGradKernel(const Context& ctx,
                        const std::vector<const DenseTensor*>& inputs,
                        const std::vector<const DenseTensor*>& outputs_grad,
                        std::vector<DenseTensor*> inputs_grad) {
  int n = outputs_grad.size();
  switch (n) {
    case 1:
      MeshgridBackward<T, Context, 1>(ctx, inputs, outputs_grad, inputs_grad);
      break;
    case 2:
      MeshgridBackward<T, Context, 2>(ctx, inputs, outputs_grad, inputs_grad);
      break;
    case 3:
      MeshgridBackward<T, Context, 3>(ctx, inputs, outputs_grad, inputs_grad);
      break;
    case 4:
      MeshgridBackward<T, Context, 4>(ctx, inputs, outputs_grad, inputs_grad);
      break;
    case 5:
      MeshgridBackward<T, Context, 5>(ctx, inputs, outputs_grad, inputs_grad);
      break;
    case 6:
      MeshgridBackward<T, Context, 6>(ctx, inputs, outputs_grad, inputs_grad);
      break;
    default:
      PADDLE_THROW(phi::errors::InvalidArgument(
          "Excepted Tensor numbers between 1 and 6, but only received d% .",
          n));
  }
}

}  // namespace phi