amp_nn.py 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.data_feeder import check_variable_and_dtype, check_type
from paddle.fluid.layer_helper import LayerHelper
17
from paddle.fluid.framework import Variable, in_dygraph_mode
18
from paddle.fluid import core
19
from paddle import _C_ops
20 21 22 23

__all__ = ['check_finite_and_unscale', 'update_loss_scaling']


24
def check_finite_and_unscale(x, scale, name=None, float_status=None):
25 26 27 28 29 30
    """
    Check if input X contains all finite data, if yes, scale it by input Scale.

    $$Out = X / scale$$

    If any tensor in X contains Inf or Nan, the Out will generate a indicator.
31 32
    FoundInfinite will be 1 (True), and Out will not be scaled. In this case, the data of
    Out should not be used, and its data may not be deterministic.
33
    Otherwise, FoundInfinite will be 0 (False).
34

35 36 37
    Args:
        x(list|tuple): The input tensors of check_finite_and_unscale operator.
        scale: The scale of check_finite_and_unscale operator.
38
        float_status(Tensor): (Only used on NPU) The float status to check overflow.
39 40 41
    """
    check_type(x, 'x', (tuple, list), 'check_finite_and_unscale')
    for e in x:
42
        check_variable_and_dtype(e, "x", ['float16', 'float32', 'float64'],
43 44 45
                                 'check_finite_and_unscale')

    helper = LayerHelper("check_finite_and_unscale", **locals())
46

47 48
    found_inf = helper.create_variable_for_type_inference(dtype='bool')

49 50 51 52
    if in_dygraph_mode():
        _C_ops.check_finite_and_unscale_(x, scale, found_inf)
        return x, found_inf

53
    inputs = {'X': x, 'Scale': scale}
54 55 56 57 58
    if core.is_compiled_with_npu():
        check_variable_and_dtype(float_status, "float_status",
                                 ['float16', 'float32'],
                                 'check_finite_and_unscale')
        inputs['FloatStatus'] = float_status
59
    outputs = {'Out': x, 'FoundInfinite': found_inf}
60 61 62
    helper.append_op(type='check_finite_and_unscale',
                     inputs=inputs,
                     outputs=outputs)
63 64 65 66 67 68 69 70 71 72 73 74 75

    return x, found_inf


def update_loss_scaling(x,
                        found_inf,
                        prev_loss_scaling,
                        num_good_steps,
                        num_bad_steps,
                        incr_every_n_steps,
                        decr_every_n_nan_or_inf,
                        incr_ratio,
                        decr_ratio,
76
                        stop_update=False,
77 78
                        name=None):
    """
79 80
    Update loss scaling according to overall gradients. If all gradients is
    finite after incr_every_n_steps, loss scaling will increase by incr_ratio.
81 82 83 84 85
    Otherwise, loss scaling will decrease by decr_ratio after
    decr_every_n_nan_or_inf steps and each step some gradients are infinite.

    Args:
        x(list|tuple): The input tensors of update_loss_scaling operator.
86
        found_inf (Variable): A boolean variable indicates whether
87 88
                                     there is any infinite gradient.
        prev_loss_scaling (Variable): Previous loss scaling.
89
        num_good_steps (Variable): A variable accumulates good steps in which
90
                                   all gradients are finite.
91
        num_bad_steps (Variable): A variable accumulates bad steps in which
92
                                  some gradients are infinite.
93 94
        incr_every_n_steps (int): A variable represents increasing loss
                                       scaling every n consecutive steps with
95
                                       finite gradients.
96 97
        decr_every_n_nan_or_inf (int): A variable represents decreasing
                                            loss scaling every n accumulated
98
                                            steps with nan or inf gradients.
99
        incr_ratio(float): The multiplier to use when increasing the loss
100
                           scaling.
101
        decr_ratio(float): The less-than-one-multiplier to use when decreasing
102 103 104 105 106 107 108
                           loss scaling.
    """

    check_variable_and_dtype(prev_loss_scaling, "prev_loss_scaling",
                             ['float32', 'float64'], "update_loss_scaling")
    check_type(x, 'x', (tuple, list), 'update_loss_scaling')
    for e in x:
109
        check_variable_and_dtype(e, "x", ['float16', 'float32', 'float64'],
110
                                 'update_loss_scaling')
111 112 113 114 115
        if e.dtype == core.VarDesc.VarType.FP16:
            assert prev_loss_scaling.dtype == core.VarDesc.VarType.FP32, \
                "The dtype of prev_loss_scaling should be float32 when the dtype of x is float16."
        else:
            assert prev_loss_scaling.dtype == e.dtype, "The dtype of prev_loss_scaling should be equal to the dtype of x."
116

117 118 119 120 121 122 123
    if in_dygraph_mode():
        _C_ops.update_loss_scaling_(x, found_inf, prev_loss_scaling,
                                    num_good_steps, num_bad_steps,
                                    incr_every_n_steps, decr_every_n_nan_or_inf,
                                    incr_ratio, decr_ratio, stop_update)
        return x

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    helper = LayerHelper("update_loss_scaling", **locals())

    inputs = {
        'X': x,
        'FoundInfinite': found_inf,
        'PrevLossScaling': prev_loss_scaling,
        'InGoodSteps': num_good_steps,
        'InBadSteps': num_bad_steps
    }

    outputs = {
        'Out': x,
        'LossScaling': prev_loss_scaling,
        'OutGoodSteps': num_good_steps,
        'OutBadSteps': num_bad_steps
    }

    attrs = {
        'incr_every_n_steps': incr_every_n_steps,
        'decr_every_n_nan_or_inf': decr_every_n_nan_or_inf,
        'incr_ratio': incr_ratio,
        'decr_ratio': decr_ratio,
    }

148 149 150 151 152
    if isinstance(stop_update, Variable):
        inputs['StopUpdate'] = stop_update
    else:
        attrs['stop_update'] = stop_update

153 154 155 156
    helper.append_op(type='update_loss_scaling',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
157 158

    return x