custom_device_common_op_registry.cc 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/custom_device_common_op_registry.h"
16 17
#include "paddle/fluid/distributed/collective/process_group.h"
#include "paddle/fluid/operators/collective/c_concat_op.h"
18
#include "paddle/fluid/operators/load_combine_op.h"
19 20
#include "paddle/fluid/operators/run_program_op.h"
#include "paddle/fluid/operators/save_combine_op.h"
21 22
#include "paddle/phi/api/backward/backward_api.h"
#include "paddle/phi/api/include/api.h"
23
#include "paddle/phi/backends/device_manager.h"
24
#include "paddle/phi/core/kernel_registry.h"
25
#include "paddle/phi/kernels/funcs/axis_utils.h"
26 27 28 29 30 31 32 33 34

#define REGISTER_OP_CUSTOM_DEVICE_KERNEL(op_type, dev_type, ...)             \
  static paddle::framework::OpKernelRegistrar<phi::CustomPlace, __VA_ARGS__> \
      __op_custom_device_kernel_registrar_##op_type##_##__acosf##__(         \
          #op_type,                                                          \
          dev_type,                                                          \
          paddle::framework::OpKernelType::kDefaultCustomizedTypeValue);     \
  __op_custom_device_kernel_registrar_##op_type##_##__acosf##__.Touch();

35 36 37 38 39 40 41
#define REGISTER_CUSTOM_DEVICE_GENERAL_KERNEL(                             \
    kernel_name, dev_type, layout, kernel_fn)                              \
  static phi::KernelRegistrar                                              \
      __reg_custom_device_phi_kernel_##kernel_name##_##backend##_##layout( \
          phi::RegType::INNER,                                             \
          #kernel_name,                                                    \
          dev_type,                                                        \
42
          DATA_LAYOUT(layout),                                             \
43 44 45 46 47
          ::phi::KernelArgsParseFunctor<decltype(&kernel_fn)>::Parse,      \
          [](const phi::KernelKey& kernel_key, phi::Kernel* kernel) {},    \
          PHI_KERNEL(kernel_fn),                                           \
          PHI_VARIADIC_KERNEL(kernel_fn))

48 49 50
namespace paddle {
namespace operators {

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
template <typename DeviceContext, typename T>
class CConcatOpCustomDeviceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto x = ctx.Input<phi::DenseTensor>("X");
    auto out = ctx.Output<phi::DenseTensor>("Out");

    int nranks = ctx.Attr<int>("nranks");
    int rank = ctx.Attr<int>("rank");
    int rid = ctx.Attr<int>("ring_id");
    PADDLE_ENFORCE_GE(rank,
                      0,
                      platform::errors::PreconditionNotMet(
                          "The value of rank (%d) for c_concat must be "
                          "greater than or equal to 0.",
                          rank));
    PADDLE_ENFORCE_GE(nranks,
                      2,
                      platform::errors::PreconditionNotMet(
                          "The value of nranks (%d) for c_concat must be "
                          "greater than or equal to 2.",
                          nranks));
    PADDLE_ENFORCE_LT(rank,
                      nranks,
                      platform::errors::PreconditionNotMet(
                          "The value of rank (%d) for c_concat must be "
                          "less than that of nranks (%d).",
                          rank,
                          nranks));

    auto& dev_ctx = ctx.template device_context<phi::CustomContext>();
    phi::DenseTensor temp_out;
    framework::DDim temp_out_dims = x->dims();
    temp_out_dims[0] *= nranks;
    temp_out.Resize(temp_out_dims);
    dev_ctx.template Alloc<T>(&temp_out);

    auto map = distributed::ProcessGroupMapFromGid::getInstance();
    if (map->has(rid)) {
      // Use ProcessGroup
      distributed::ProcessGroup* pg = map->get(rid);
      std::vector<phi::DenseTensor> in_tensor;
      std::vector<phi::DenseTensor> out_tensor;
      in_tensor.push_back(*x);
      out_tensor.push_back(temp_out);
      auto task = pg->AllGather(in_tensor, out_tensor);
      task->Wait();
    } else {
      PADDLE_THROW(phi::errors::Unavailable(
          "CustomDevice c_concat only support ProcessGroup"));
    }
    std::vector<phi::DenseTensor> inputs;
    int axis = x->dims().size() - 1;
    auto out_dims = x->dims();
    out_dims[out_dims.size() - 1] *= nranks;
    int rows_per_tensor = x->dims()[0];
    int offset = 0;
    for (int i = 0; i < nranks; i++) {
      phi::DenseTensor temp = temp_out.Slice(offset, offset + rows_per_tensor);
      inputs.emplace_back(temp);
      offset += rows_per_tensor;
    }

    out->Resize(out_dims);
    std::vector<paddle::Tensor> inputs_t(inputs.size());
    for (size_t i = 0; i < inputs.size(); i++) {
      auto t = std::make_shared<phi::DenseTensor>();
      t->ShareDataWith(inputs[i]);
      inputs_t[i].set_impl(t);
    }
    auto output = paddle::experimental::concat(inputs_t, axis);
    out->ShareDataWith(
        *reinterpret_cast<phi::DenseTensor*>(output.impl().get()));
  }
};

template <typename DeviceContext, typename T>
class CSplitOpCustomDeviceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto x = ctx.Input<phi::DenseTensor>("X");
    auto out = ctx.Output<phi::DenseTensor>("Out");

    int nranks = ctx.Attr<int>("nranks");
    int rank = ctx.Attr<int>("rank");

    PADDLE_ENFORCE_GE(rank,
                      0,
                      platform::errors::PreconditionNotMet(
                          "The value of rank (%d) for c_split must be "
                          "greater than or equal to 0.",
                          rank));
    PADDLE_ENFORCE_GE(nranks,
                      2,
                      platform::errors::PreconditionNotMet(
                          "The value of nranks (%d) for c_split must be "
                          "greater than or equal to 2.",
                          nranks));
    PADDLE_ENFORCE_LT(rank,
                      nranks,
                      platform::errors::PreconditionNotMet(
                          "The value of rank (%d) for c_split must be "
                          "less than that of nranks (%d).",
                          rank,
                          nranks));

    auto dims = x->dims();
    auto dims_size = dims.size();

    dims[dims_size - 1] /= nranks;
    out->Resize(dims);
    std::vector<int64_t> split_list(nranks, dims[dims_size - 1]);
    int axis = dims_size - 1;

    auto x_tmp = std::make_shared<phi::DenseTensor>();
    x_tmp->ShareDataWith(*x);
    paddle::Tensor x_tensor(x_tmp);
    auto outputs = paddle::experimental::split(x_tensor, split_list, axis);
    out->ShareDataWith(
        *reinterpret_cast<phi::DenseTensor*>(outputs[rank].impl().get()));
  }
};

template <typename DeviceContext, typename T>
class CEmbeddingOpCustomDeviceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* ids_t = ctx.Input<phi::DenseTensor>("Ids");
    auto* table_t = ctx.Input<phi::DenseTensor>("W");
    auto* output_t = ctx.Output<phi::DenseTensor>("Out");
    auto out_dims = output_t->dims();
    auto start_index = ctx.Attr<int64_t>("start_index");

    auto K = ids_t->numel();
    auto N = table_t->dims()[0];
    auto D = table_t->dims()[1];
    auto index_type = ids_t->dtype();
    if (index_type == phi::DataType::INT32 ||
        index_type == phi::DataType::INT64) {
      auto x_tmp = std::make_shared<phi::DenseTensor>();
      x_tmp->ShareDataWith(*ids_t).Resize({K});
      auto w_tmp = std::make_shared<phi::DenseTensor>();
      w_tmp->ShareDataWith(*table_t).Resize({N, D});
      paddle::Tensor x_tensor(x_tmp), w_tensor(w_tmp);
      auto start_index_tensor = paddle::experimental::full_like(
          x_tensor, start_index, x_tensor.dtype(), x_tensor.place());
      auto end_index_tensor = paddle::experimental::full_like(
          x_tensor, start_index + N, x_tensor.dtype(), x_tensor.place());
      auto ids_mask_tensor = paddle::experimental::logical_and(
          x_tensor.greater_equal(start_index_tensor),
          x_tensor.less_than(end_index_tensor));
      auto ids_tensor = (x_tensor - start_index_tensor)
                            .multiply(paddle::experimental::cast(
                                ids_mask_tensor, x_tensor.dtype()));
      auto out_tensor =
          paddle::experimental::reshape(
              paddle::experimental::cast(ids_mask_tensor, w_tensor.dtype()),
              {K, 1})
              .multiply(paddle::experimental::reshape(
                  paddle::experimental::embedding(
                      ids_tensor, w_tensor, -1, false),
                  {K, D}));
      output_t
          ->ShareDataWith(
              *reinterpret_cast<phi::DenseTensor*>(out_tensor.impl().get()))
          .Resize(out_dims);
    } else {
      PADDLE_THROW(platform::errors::Unavailable(
          "CustomDevice c_embedding ids only support int32 or int64."));
    }
  }
};

template <typename DeviceContext, typename T>
class CEmbeddingGradOpCustomDeviceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto start_index = ctx.Attr<int64_t>("start_index");
    auto ids_t = ctx.Input<phi::DenseTensor>("Ids");
    auto d_output_t =
        ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto table_t = ctx.Input<phi::DenseTensor>("W");
    auto table_grad_t =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("W"));
    table_grad_t->Resize(table_t->dims());
    auto& dev_ctx = ctx.template device_context<phi::CustomContext>();

    auto K = ids_t->numel();
    auto N = table_t->dims()[0];
    auto D = table_t->dims()[1];
    const auto& index_type = ids_t->dtype();
    if (index_type == phi::DataType::INT32 ||
        index_type == phi::DataType::INT64) {
      auto x_tmp = std::make_shared<phi::DenseTensor>();
      x_tmp->ShareDataWith(*ids_t).Resize({K});
      auto w_tmp = std::make_shared<phi::DenseTensor>();
      w_tmp->set_meta(table_t->meta());
      dev_ctx.Alloc(w_tmp.get(), w_tmp->dtype());
      auto out_grad_tmp = std::make_shared<phi::DenseTensor>();
      out_grad_tmp->ShareDataWith(*d_output_t).Resize({K, D});
      paddle::Tensor x_tensor(x_tmp), w_tensor(w_tmp),
          out_grad_tensor(out_grad_tmp);
      auto start_index_tensor = paddle::experimental::full_like(
          x_tensor, start_index, x_tensor.dtype(), x_tensor.place());
      auto end_index_tensor = paddle::experimental::full_like(
          x_tensor, start_index + N, x_tensor.dtype(), x_tensor.place());
      auto ids_mask_tensor = paddle::experimental::logical_and(
          x_tensor.greater_equal(start_index_tensor),
          x_tensor.less_equal(end_index_tensor));
      auto real_ids_tensor = (x_tensor - start_index_tensor)
                                 .multiply(paddle::experimental::cast(
                                     ids_mask_tensor, x_tensor.dtype()));
      auto out_grad_tensor_mul_mask =
          paddle::experimental::reshape(out_grad_tensor, {K, D})
              .multiply(paddle::experimental::reshape(
                  paddle::experimental::cast(ids_mask_tensor, table_t->dtype()),
                  {K, 1}));
      paddle::Tensor table_grad_tensor;
      paddle::experimental::embedding_grad(real_ids_tensor,
                                           w_tensor,
                                           out_grad_tensor_mul_mask,
                                           -1,
                                           false,
                                           &table_grad_tensor);
      table_grad_t->ShareDataWith(
          *reinterpret_cast<phi::DenseTensor*>(table_grad_tensor.impl().get()));
    } else {
      PADDLE_THROW(platform::errors::Unavailable(
          "CustomDevice c_embedding ids only support int32 or int64."));
    }
  }
};

template <typename DeviceContext, typename T>
class CSoftmaxWithCrossEntropyOpCustomDeviceKernel
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const int rid = ctx.Attr<int>("ring_id");
    auto map = distributed::ProcessGroupMapFromGid::getInstance();
    if (map->has(rid)) {
      const phi::DenseTensor* logits = ctx.Input<phi::DenseTensor>("Logits");
      const phi::DenseTensor* labels = ctx.Input<phi::DenseTensor>("Label");
      phi::DenseTensor* softmax = ctx.Output<phi::DenseTensor>("Softmax");
      phi::DenseTensor* loss = ctx.Output<phi::DenseTensor>("Loss");
      auto softmax_dims = softmax->dims();
      auto loss_dims = loss->dims();

      const int64_t ignore_index = ctx.Attr<int64_t>("ignore_index");
      PADDLE_ENFORCE_LT(ignore_index,
                        0,
                        platform::errors::InvalidArgument(
                            "When SoftmaxWithCrossEntropy run on CustomDevice, "
                            "ignore_index should be <=0, however it's %ld",
                            ignore_index));
      const int rid = ctx.Attr<int>("ring_id");
      const int rank = ctx.Attr<int>("rank");

      distributed::ProcessGroup* pg = map->get(rid);
      distributed::AllreduceOptions opts;

      // allocate memory on device.
      const auto& logits_dims = logits->dims();

      const int axis = logits_dims.size() - 1;
      const int N = phi::funcs::SizeToAxis(axis, logits_dims);
      const int D = phi::funcs::SizeFromAxis(axis, logits_dims);

      auto logits_2d = std::make_shared<phi::DenseTensor>();
      auto labels_1d = std::make_shared<phi::DenseTensor>();
      logits_2d->ShareDataWith(*logits).Resize({N, D});
      labels_1d->ShareDataWith(*labels).Resize({N});
      paddle::Tensor logits_2d_tensor(logits_2d), labels_1d_tensor(labels_1d);

      // step 1, obtain logit_max
      auto logits_2d_max_tensor = logits_2d_tensor.max({1}, true);
      std::vector<phi::DenseTensor> in_out;
      in_out.push_back(*reinterpret_cast<phi::DenseTensor*>(
          logits_2d_max_tensor.impl().get()));
      opts.reduce_op = distributed::ReduceOp::MAX;
      pg->AllReduce(in_out, in_out, opts)->Synchronize();

      // step 2, obtain logit - logit_max
      auto logits_2d_sub_max = paddle::experimental::clip(
          logits_2d_tensor - logits_2d_max_tensor, -64., 0.);

      // step 3, obtain predict target
      const int start_index = rank * D;
      auto start_index_tensor =
          paddle::experimental::full_like(labels_1d_tensor,
                                          start_index,
                                          labels_1d_tensor.dtype(),
                                          labels_1d_tensor.place());
      auto end_index_tensor =
          paddle::experimental::full_like(labels_1d_tensor,
                                          start_index + D,
                                          labels_1d_tensor.dtype(),
                                          labels_1d_tensor.place());
      auto labels_1d_mask = paddle::experimental::logical_and(
          labels_1d_tensor.greater_equal(start_index_tensor),
          labels_1d_tensor.less_than(end_index_tensor));
      auto real_label_tensor =
          (labels_1d_tensor - start_index_tensor)
              .multiply(paddle::experimental::cast(labels_1d_mask,
                                                   labels_1d_tensor.dtype()));

      auto predicted_logits_tensor =
          logits_2d_sub_max
              .multiply(paddle::experimental::cast(
                  paddle::experimental::one_hot(real_label_tensor, D),
                  logits_2d_sub_max.dtype()))
              .sum({1}, logits_2d_sub_max.dtype(), false)
              .multiply(paddle::experimental::cast(labels_1d_mask,
                                                   logits_2d_sub_max.dtype()));

      in_out.clear();
      in_out.push_back(*reinterpret_cast<phi::DenseTensor*>(
          predicted_logits_tensor.impl().get()));
      opts.reduce_op = distributed::ReduceOp::SUM;
      pg->AllReduce(in_out, in_out, opts)->Synchronize();

      // step 4, obtain exp(logit)
      auto softmax_2d_tensor = logits_2d_sub_max.exp();

      // step 5, obtain sum_exp_logits
      auto sum_exp_logits_tensor =
          softmax_2d_tensor.sum({1}, softmax_2d_tensor.dtype(), false);

      in_out.clear();
      in_out.push_back(*reinterpret_cast<phi::DenseTensor*>(
          sum_exp_logits_tensor.impl().get()));
      opts.reduce_op = distributed::ReduceOp::SUM;
      pg->AllReduce(in_out, in_out, opts)->Synchronize();

      auto softmax_out = softmax_2d_tensor.divide(
          paddle::experimental::reshape(sum_exp_logits_tensor, {N, 1}));
      auto labels_1d_not_equal_ignore = labels_1d_tensor.not_equal(
          paddle::experimental::full_like(labels_1d_tensor,
                                          ignore_index,
                                          labels_1d_tensor.dtype(),
                                          labels_1d_tensor.place()));
      auto loss_out =
          (sum_exp_logits_tensor.log() - predicted_logits_tensor)
              .multiply(paddle::experimental::cast(
                  labels_1d_not_equal_ignore, sum_exp_logits_tensor.dtype()));
      softmax
          ->ShareDataWith(
              *reinterpret_cast<phi::DenseTensor*>(softmax_out.impl().get()))
          .Resize(softmax_dims);
      loss->ShareDataWith(
              *reinterpret_cast<phi::DenseTensor*>(loss_out.impl().get()))
          .Resize(loss_dims);
    } else {
      PADDLE_THROW(
          phi::errors::Unavailable("CustomDevice c_softmax_with_cross_entropy "
                                   "only support ProcessGroup"));
    }
  }
};

template <typename DeviceContext, typename T>
class CSoftmaxWithCrossEntropyGradCustomDeviceKernel
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const phi::DenseTensor* labels = context.Input<phi::DenseTensor>("Label");
    const phi::DenseTensor* loss_grad =
        context.Input<phi::DenseTensor>(framework::GradVarName("Loss"));
    const phi::DenseTensor* softmax =
        context.Input<phi::DenseTensor>("Softmax");
    phi::DenseTensor* logit_grad =
        context.Output<phi::DenseTensor>(framework::GradVarName("Logits"));

    const int64_t ignore_index = context.Attr<int64_t>("ignore_index");
    const int rank = context.Attr<int>("rank");
    if (logit_grad != softmax) {
      framework::TensorCopy(
          *softmax, context.GetPlace(), context.device_context(), logit_grad);
    }
    const auto sofrmax_dims = softmax->dims();
    const int axis = sofrmax_dims.size() - 1;
    const int N = phi::funcs::SizeToAxis(axis, sofrmax_dims);
    const int D = phi::funcs::SizeFromAxis(axis, sofrmax_dims);
    const auto& label_type = labels->dtype();

    if (label_type == phi::DataType::INT32 ||
        label_type == phi::DataType::INT64) {
      auto logit_grad_t = std::make_shared<phi::DenseTensor>();
      logit_grad_t->ShareDataWith(*logit_grad).Resize({N, D});
      auto loss_grad_t = std::make_shared<phi::DenseTensor>();
      loss_grad_t->ShareDataWith(*loss_grad).Resize({N});
      auto labels_1d = std::make_shared<phi::DenseTensor>();
      labels_1d->ShareDataWith(*labels).Resize({N});
      paddle::Tensor logits_grad_tensor(logit_grad_t),
          loss_grad_tensor(loss_grad_t), labels_1d_tensor(labels_1d);

      auto labels_1d_not_equal_ignore = paddle::experimental::reshape(
          paddle::experimental::not_equal(
              labels_1d_tensor,
              paddle::experimental::full_like(labels_1d_tensor,
                                              ignore_index,
                                              labels_1d_tensor.dtype(),
                                              labels_1d_tensor.place())),
          {N, 1});
      auto start_index_tensor =
          paddle::experimental::full_like(labels_1d_tensor,
                                          rank * D,
                                          labels_1d_tensor.dtype(),
                                          labels_1d_tensor.place());

      auto logits_grad_out_tensor1 = paddle::experimental::subtract(
          paddle::experimental::multiply(
              logits_grad_tensor,
              paddle::experimental::cast(labels_1d_not_equal_ignore,
                                         logits_grad_tensor.dtype())),
          paddle::experimental::cast(
              paddle::experimental::one_hot(
                  paddle::experimental::subtract(labels_1d_tensor,
                                                 start_index_tensor),
                  D),
              logits_grad_tensor.dtype()));

      auto logits_grad_out_tensor2 = paddle::experimental::multiply(
          logits_grad_out_tensor1,
          paddle::experimental::reshape(loss_grad_tensor, {N, 1}));
      logit_grad
          ->ShareDataWith(*reinterpret_cast<phi::DenseTensor*>(
              logits_grad_out_tensor2.impl().get()))
          .Resize(sofrmax_dims);
    } else {
      PADDLE_THROW(phi::errors::Unavailable(
          "CustomDevice c_softmax_with_cross_entropy_grad "
          "label_type only support int32/int64"));
    }
  }
};

488 489 490 491 492 493
template <typename Context>
void FeedDenseTensorKernel(const Context& dev_ctx,
                           const phi::ExtendedTensor& x,
                           int col,
                           phi::DenseTensor* out);

494
void RegisterCustomDeviceCommonKernel(const std::string& dev_type) {
495
#ifdef PADDLE_WITH_CUSTOM_DEVICE
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  auto device_type = dev_type.c_str();
  /* see [Why use single type kernel] */
  REGISTER_OP_CUSTOM_DEVICE_KERNEL(
      run_program,
      device_type,
      paddle::operators::
          RunProgramOpKernel<paddle::platform::CustomDeviceContext, float>);
  REGISTER_OP_CUSTOM_DEVICE_KERNEL(
      run_program_grad,
      device_type,
      paddle::operators ::
          RunProgramGradOpKernel<paddle::platform::CustomDeviceContext, float>);
  REGISTER_OP_CUSTOM_DEVICE_KERNEL(
      save_combine,
      device_type,
      paddle::operators ::
          SaveCombineOpKernel<paddle::platform::CustomDeviceContext, float>,
      paddle::operators ::
          SaveCombineOpKernel<paddle::platform::CustomDeviceContext, double>,
      paddle::operators ::
          SaveCombineOpKernel<paddle::platform::CustomDeviceContext, int>,
      paddle::operators ::
          SaveCombineOpKernel<paddle::platform::CustomDeviceContext, int64_t>);
519 520 521 522 523 524 525 526 527 528 529 530 531
  REGISTER_OP_CUSTOM_DEVICE_KERNEL(
      load_combine,
      device_type,
      paddle::operators::
          LoadCombineOpKernel<paddle::platform::CustomDeviceContext, float>,
      paddle::operators::
          LoadCombineOpKernel<paddle::platform::CustomDeviceContext, double>,
      paddle::operators::
          LoadCombineOpKernel<paddle::platform::CustomDeviceContext, int>,
      paddle::operators::
          LoadCombineOpKernel<paddle::platform::CustomDeviceContext, int8_t>,
      paddle::operators::
          LoadCombineOpKernel<paddle::platform::CustomDeviceContext, int64_t>);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
  REGISTER_OP_CUSTOM_DEVICE_KERNEL(
      c_concat,
      device_type,
      paddle::operators::CConcatOpCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          float>,
      paddle::operators::CConcatOpCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          paddle::platform::float16>);
  REGISTER_OP_CUSTOM_DEVICE_KERNEL(
      c_split,
      device_type,
      paddle::operators::CSplitOpCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          float>,
      paddle::operators::CSplitOpCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          int>,
      paddle::operators::CSplitOpCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          paddle::platform::float16>);
  REGISTER_OP_CUSTOM_DEVICE_KERNEL(
      c_embedding,
      device_type,
      paddle::operators::CEmbeddingOpCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          float>);
  REGISTER_OP_CUSTOM_DEVICE_KERNEL(
      c_embedding_grad,
      device_type,
      paddle::operators::CEmbeddingGradOpCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          float>);

  REGISTER_OP_CUSTOM_DEVICE_KERNEL(
      c_softmax_with_cross_entropy,
      device_type,
      paddle::operators::CSoftmaxWithCrossEntropyOpCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          float>,
      paddle::operators::CSoftmaxWithCrossEntropyOpCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          double>,
      paddle::operators::CSoftmaxWithCrossEntropyOpCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          paddle::platform::float16>) {}

  REGISTER_OP_CUSTOM_DEVICE_KERNEL(
      c_softmax_with_cross_entropy_grad,
      device_type,
      paddle::operators::CSoftmaxWithCrossEntropyGradCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          float>,
      paddle::operators::CSoftmaxWithCrossEntropyGradCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          double>,
      paddle::operators::CSoftmaxWithCrossEntropyGradCustomDeviceKernel<
          paddle::platform::CustomDeviceContext,
          paddle::platform::float16>) {}

592
#endif
593 594 595 596 597 598
}

}  // namespace operators
}  // namespace paddle

#undef REGISTER_OP_CUSTOM_DEVICE_KERNEL
599
#undef REGISTER_CUSTOM_DEVICE_GENERAL_KERNEL