test_decayed_adagrad_op.py 2.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
from op_test import OpTest
18 19 20


class TestDecayedAdagradOp1(OpTest):
21
    '''Test DecayedAdagrad operator with explicit attributes'''
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

    def setUp(self):
        self.op_type = "decayed_adagrad"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")
        lr = 0.01
        decay = 0.80
        epsilon = 1e-8

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
37
            'LearningRate': np.array([lr]).astype("float32"),
38 39 40 41 42 43 44 45 46 47
        }

        self.attrs = {'decay': decay, 'epsilon': epsilon}

        moment_out = decay * moment + (1 - decay) * grad * grad
        param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)

        self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}

    def test_check_output(self):
48
        self.check_output(check_eager=True)
49 50 51


class TestDecayedAdagradOp2(OpTest):
52
    '''Test DecayedAdagrad operator with default attributes'''
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    def setUp(self):
        self.op_type = "decayed_adagrad"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")
        lr = 0.01
        decay = 0.95
        epsilon = 1e-6

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
68
            'LearningRate': np.array([lr]).astype("float32"),
69 70 71 72 73 74 75 76 77 78
        }

        self.attrs = {'decay': decay, 'epsilon': epsilon}

        moment_out = decay * moment + (1 - decay) * grad * grad
        param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)

        self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}

    def test_check_output(self):
79
        self.check_output(check_eager=True)
80 81 82


if __name__ == "__main__":
83
    import paddle
84

85
    paddle.enable_static()
86
    unittest.main()