scatter.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import warnings
16

17 18
import paddle
import paddle.distributed as dist
19
import paddle.fluid.data_feeder as data_feeder
20
import paddle.fluid.framework as framework
21 22 23 24
import paddle.fluid.layer_helper as layer_helper
from paddle.distributed.communication.group import (
    _get_global_group,
    _get_or_throw_group_rank,
25
    _warn_cur_rank_not_in_group,
26
)
27 28


29
def _scatter_tensor_in_dygraph(
30
    out_tensor, in_tensor, src_rank_in_group, group, sync_op, use_calc_stream
31
):
32 33 34 35
    nranks = group.nranks

    if use_calc_stream:
        return group.process_group.scatter_tensor_on_calc_stream(
36
            out_tensor, in_tensor, src_rank_in_group
37
        )
38

39
    task = group.process_group.scatter_tensor(
40
        out_tensor, in_tensor, src_rank_in_group, sync_op
41
    )
42 43 44 45 46 47
    if sync_op:
        task.wait()

    return task


48
def _scatter_in_dygraph(
49
    tensor, tensor_list, src_rank_in_group, group, sync_op, use_calc_stream
50
):
51
    nranks = group.nranks
52
    if group.rank == src_rank_in_group:
53 54
        if len(tensor_list) == 0:
            raise RuntimeError(
55 56
                "The tensor_list should not be empty on src rank."
            )
57 58 59 60 61
    else:
        tensor_list = [tensor for _ in range(nranks)]

    if use_calc_stream:
        return group.process_group.scatter_on_calc_stream(
62
            tensor, tensor_list, src_rank_in_group
63
        )
64

65
    task = group.process_group.scatter(
66
        tensor, tensor_list, src_rank_in_group, sync_op
67
    )
68 69 70 71 72 73
    if sync_op:
        task.wait()

    return task


74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
def _scatter_in_static_mode(
    tensor,
    tensor_or_tensor_list,
    src_rank_in_group,
    group,
    sync_op,
    use_calc_stream,
):
    nranks = dist.get_world_size() if group is None else group.nranks
    rank = dist.get_rank()

    input_tensor = tensor_or_tensor_list
    if isinstance(tensor_or_tensor_list, list):
        tensor_list = tensor_or_tensor_list
        if rank == src_rank_in_group:
            if len(tensor_list) == 0:
                raise RuntimeError(
                    "The tensor_list should not be empty on src rank."
                )
        else:
            tensor_list = [tensor for _ in range(nranks)]
        input_tensor = paddle.concat(tensor_list, axis=0)

    ring_id = 0 if group is None else group.id

    data_feeder.check_variable_and_dtype(
        tensor,
        'tensor',
        [
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'int8',
            'uint8',
            'bool',
        ],
        'scatter',
    )

    op_type = 'c_scatter'
    helper = layer_helper.LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [input_tensor]},
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'root': src_rank_in_group,
            'use_calc_stream': sync_op,
            'nranks': nranks,
        },
    )

    return None


132 133 134 135 136 137 138 139
def scatter(
    tensor,
    tensor_or_tensor_list=None,
    src=0,
    group=None,
    sync_op=True,
    use_calc_stream=False,
):
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    """

    Scatter a tensor (or a tensor list) across devices.

    Args:
        tensor (Tensor): The output tensor on each rank. The result will overwrite this tenor after communication. Support
            float16, float32, float64, int32, int64, int8, uint8 or bool as the input data type.
        tensor_or_tensor_list (Union[Tensor, List[Tensor]]): The input to scatter (default is `None`, must be specified on the source rank).
            If it is a tensor, it should be correctly-sized. If it is a list, it should contain correctly-sized tensors.
        src (int, optional): Rank of the source device. If none is given, use `0` as default.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
        use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
            option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.

    Returns:
        Return a task object.

    Warning:
        This API only supports the dygraph mode now.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            if dist.get_rank() == 0:
                data1 = paddle.to_tensor([7, 8, 9])
                data2 = paddle.to_tensor([10, 11, 12])
                dist.stream.scatter(data1, src=1)
            else:
                data1 = paddle.to_tensor([1, 2, 3])
                data2 = paddle.to_tensor([4, 5, 6])
                dist.stream.scatter(data1, [data1, data2], src=1)
            out = data1.numpy()
            # [1, 2, 3] (2 GPUs, out for rank 0)
            # [4, 5, 6] (2 GPUs, out for rank 1)
    """
181 182
    if _warn_cur_rank_not_in_group(group):
        return
183 184 185

    if not sync_op and use_calc_stream:
        raise RuntimeError(
186 187
            "use_calc_stream can only be true in sync op behavior."
        )
188

189 190 191 192 193 194 195 196 197 198 199
    # NOTE(liyurui): Only the source rank needs to specific the tensor_or_tensor_list argument.
    # Other ranks which pass this argument in will be ignored with a warning.
    # If a tensor_list passed in, we need to concat it to a tensor before invoke C++ API.
    # If a tensor passed in, concat is not needed.
    # The passed in type for non-src rank is meaningless, for it will be ignored.
    if src != dist.get_rank():
        if tensor_or_tensor_list is not None:
            warnings.warn(
                "Specific `tensor_or_tensor_list` is meaningless for rank which is not src."
            )
        tensor_or_tensor_list = []
200 201

    if framework.in_dygraph_mode():
202 203
        group = _get_global_group() if group is None else group
        src_rank_in_group = _get_or_throw_group_rank(src, group)
204
        if paddle.is_tensor(tensor_or_tensor_list):
205 206 207
            return _scatter_tensor_in_dygraph(
                tensor,
                tensor_or_tensor_list,
208
                src_rank_in_group,
209 210 211 212
                group,
                sync_op,
                use_calc_stream,
            )
213
        else:
214 215 216
            return _scatter_in_dygraph(
                tensor,
                tensor_or_tensor_list,
217
                src_rank_in_group,
218 219 220 221
                group,
                sync_op,
                use_calc_stream,
            )
222 223 224 225 226 227 228 229 230 231 232
    else:
        assert group is None, "Group can not be used in static mode for now."

        return _scatter_in_static_mode(
            tensor,
            tensor_or_tensor_list,
            src,
            group,
            sync_op,
            use_calc_stream,
        )