recv.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.distributed.communication.stream as stream
17
import paddle.fluid.framework as framework
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111


def recv(tensor, src=0, group=None, sync_op=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The tensor to receive. Its data type
            should be float16, float32, float64, int32, int64, int8, uint8, bool or bfloat16.
        src (int): The source rank id.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        sync_op (bool, optional): Whether this op is a sync op. The default value is True.

    Returns:
        Return a task object.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            if dist.get_rank() == 0:
                data = paddle.to_tensor([7, 8, 9])
                dist.send(data, dst=1)
            else:
                data = paddle.to_tensor([1, 2, 3])
                dist.recv(data, src=0)
            print(data)
            # [7, 8, 9] (2 GPUs)
    """
    if not framework._in_legacy_dygraph():
        return stream.recv(
            tensor, src=src, group=group, sync_op=sync_op, use_calc_stream=False
        )

    # code below will be removed after we remove the old dygraph
    if group is not None and not group.is_member():
        return
    use_calc_stream = sync_op
    gsrc = src if group is None else group.get_group_rank(src)
    ring_id = 0 if group is None else group.id
    return paddle._legacy_C_ops.recv_v2(
        tensor,
        'use_calc_stream',
        use_calc_stream,
        'ring_id',
        ring_id,
        'peer',
        src,
        'dtype',
        tensor.dtype,
        'out_shape',
        tensor.shape,
    )


def irecv(tensor, src=None, group=None):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32, int64, int8, uint8, bool or bfloat16.
        src (int): The source rank id.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.

    Returns:
        Return a task object.

    Warning:
        This API only supports the dygraph mode.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            if dist.get_rank() == 0:
                data = paddle.to_tensor([7, 8, 9])
                task = dist.isend(data, dst=1)
            else:
                data = paddle.to_tensor([1, 2, 3])
                task = dist.irecv(data, src=0)
            task.wait()
            print(data)
            # [7, 8, 9] (2 GPUs)
    """
    return recv(tensor, src, group, sync_op=False)