layers.py 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
15
from typing import Optional, Union
16 17 18 19 20

import paddle
import paddle.nn as nn
from paddle import Tensor

21
from ..functional import compute_fbank_matrix, create_dct, power_to_db
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
from ..functional.window import get_window


class Spectrogram(nn.Layer):
    """Compute spectrogram of given signals, typically audio waveforms.
    The spectorgram is defined as the complex norm of the short-time Fourier transformation.

    Args:
        n_fft (int, optional): The number of frequency components of the discrete Fourier transform. Defaults to 512.
        hop_length (Optional[int], optional): The hop length of the short time FFT. If `None`, it is set to `win_length//4`. Defaults to None.
        win_length (Optional[int], optional): The window length of the short time FFT. If `None`, it is set to same as `n_fft`. Defaults to None.
        window (str, optional): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'. Defaults to 'hann'.
        power (float, optional): Exponent for the magnitude spectrogram. Defaults to 2.0.
        center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\\_length` at the center of `t`-th frame. Defaults to True.
        pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to 'reflect'.
        dtype (str, optional): Data type of input and window. Defaults to 'float32'.
Y
YangZhou 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of Spectrogram.



    Examples:
        .. code-block:: python

            import paddle
            from paddle.audio.features import Spectrogram

            sample_rate = 16000
            wav_duration = 0.5
            num_channels = 1
            num_frames = sample_rate * wav_duration
            wav_data = paddle.linspace(-1.0, 1.0, num_frames) * 0.1
            waveform = wav_data.tile([num_channels, 1])

            feature_extractor = Spectrogram(n_fft=512, window = 'hann', power = 1.0)
            feats = feature_extractor(waveform)
59 60
    """

61 62 63 64 65 66 67 68 69 70 71
    def __init__(
        self,
        n_fft: int = 512,
        hop_length: Optional[int] = 512,
        win_length: Optional[int] = None,
        window: str = 'hann',
        power: float = 1.0,
        center: bool = True,
        pad_mode: str = 'reflect',
        dtype: str = 'float32',
    ) -> None:
72
        super().__init__()
73 74 75 76 77 78 79

        assert power > 0, 'Power of spectrogram must be > 0.'
        self.power = power

        if win_length is None:
            win_length = n_fft

80 81 82 83 84 85 86 87 88 89 90 91
        self.fft_window = get_window(
            window, win_length, fftbins=True, dtype=dtype
        )
        self._stft = partial(
            paddle.signal.stft,
            n_fft=n_fft,
            hop_length=hop_length,
            win_length=win_length,
            window=self.fft_window,
            center=center,
            pad_mode=pad_mode,
        )
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        self.register_buffer('fft_window', self.fft_window)

    def forward(self, x: Tensor) -> Tensor:
        """
        Args:
            x (Tensor): Tensor of waveforms with shape `(N, T)`

        Returns:
            Tensor: Spectrograms with shape `(N, n_fft//2 + 1, num_frames)`.
        """
        stft = self._stft(x)
        spectrogram = paddle.pow(paddle.abs(stft), self.power)
        return spectrogram


class MelSpectrogram(nn.Layer):
    """Compute the melspectrogram of given signals, typically audio waveforms. It is computed by multiplying spectrogram with Mel filter bank matrix.

    Args:
        sr (int, optional): Sample rate. Defaults to 22050.
        n_fft (int, optional): The number of frequency components of the discrete Fourier transform. Defaults to 512.
        hop_length (Optional[int], optional): The hop length of the short time FFT. If `None`, it is set to `win_length//4`. Defaults to None.
        win_length (Optional[int], optional): The window length of the short time FFT. If `None`, it is set to same as `n_fft`. Defaults to None.
        window (str, optional): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'. Defaults to 'hann'.
        power (float, optional): Exponent for the magnitude spectrogram. Defaults to 2.0.
        center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\\_length` at the center of `t`-th frame. Defaults to True.
        pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to 'reflect'.
        n_mels (int, optional): Number of mel bins. Defaults to 64.
        f_min (float, optional): Minimum frequency in Hz. Defaults to 50.0.
        f_max (Optional[float], optional): Maximum frequency in Hz. Defaults to None.
        htk (bool, optional): Use HTK formula in computing fbank matrix. Defaults to False.
        norm (Union[str, float], optional): Type of normalization in computing fbank matrix. Slaney-style is used by default. You can specify norm=1.0/2.0 to use customized p-norm normalization. Defaults to 'slaney'.
        dtype (str, optional): Data type of input and window. Defaults to 'float32'.
Y
YangZhou 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of MelSpectrogram.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.audio.features import MelSpectrogram

            sample_rate = 16000
            wav_duration = 0.5
            num_channels = 1
            num_frames = sample_rate * wav_duration
            wav_data = paddle.linspace(-1.0, 1.0, num_frames) * 0.1
            waveform = wav_data.tile([num_channels, 1])

            feature_extractor = MelSpectrogram(sr=sample_rate, n_fft=512, window = 'hann', power = 1.0)
            feats = feature_extractor(waveform)
144 145
    """

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    def __init__(
        self,
        sr: int = 22050,
        n_fft: int = 2048,
        hop_length: Optional[int] = 512,
        win_length: Optional[int] = None,
        window: str = 'hann',
        power: float = 2.0,
        center: bool = True,
        pad_mode: str = 'reflect',
        n_mels: int = 64,
        f_min: float = 50.0,
        f_max: Optional[float] = None,
        htk: bool = False,
        norm: Union[str, float] = 'slaney',
        dtype: str = 'float32',
    ) -> None:
163
        super().__init__()
164

165 166 167 168 169 170 171 172 173 174
        self._spectrogram = Spectrogram(
            n_fft=n_fft,
            hop_length=hop_length,
            win_length=win_length,
            window=window,
            power=power,
            center=center,
            pad_mode=pad_mode,
            dtype=dtype,
        )
175 176 177 178 179 180 181
        self.n_mels = n_mels
        self.f_min = f_min
        self.f_max = f_max
        self.htk = htk
        self.norm = norm
        if f_max is None:
            f_max = sr // 2
182 183 184 185 186 187 188 189 190 191
        self.fbank_matrix = compute_fbank_matrix(
            sr=sr,
            n_fft=n_fft,
            n_mels=n_mels,
            f_min=f_min,
            f_max=f_max,
            htk=htk,
            norm=norm,
            dtype=dtype,
        )
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        self.register_buffer('fbank_matrix', self.fbank_matrix)

    def forward(self, x: Tensor) -> Tensor:
        """
        Args:
            x (Tensor): Tensor of waveforms with shape `(N, T)`

        Returns:
            Tensor: Mel spectrograms with shape `(N, n_mels, num_frames)`.
        """
        spect_feature = self._spectrogram(x)
        mel_feature = paddle.matmul(self.fbank_matrix, spect_feature)
        return mel_feature


class LogMelSpectrogram(nn.Layer):
    """Compute log-mel-spectrogram feature of given signals, typically audio waveforms.

    Args:
        sr (int, optional): Sample rate. Defaults to 22050.
        n_fft (int, optional): The number of frequency components of the discrete Fourier transform. Defaults to 512.
        hop_length (Optional[int], optional): The hop length of the short time FFT. If `None`, it is set to `win_length//4`. Defaults to None.
        win_length (Optional[int], optional): The window length of the short time FFT. If `None`, it is set to same as `n_fft`. Defaults to None.
        window (str, optional): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'. Defaults to 'hann'.
        power (float, optional): Exponent for the magnitude spectrogram. Defaults to 2.0.
        center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\\_length` at the center of `t`-th frame. Defaults to True.
        pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to 'reflect'.
        n_mels (int, optional): Number of mel bins. Defaults to 64.
        f_min (float, optional): Minimum frequency in Hz. Defaults to 50.0.
        f_max (Optional[float], optional): Maximum frequency in Hz. Defaults to None.
        htk (bool, optional): Use HTK formula in computing fbank matrix. Defaults to False.
        norm (Union[str, float], optional): Type of normalization in computing fbank matrix. Slaney-style is used by default. You can specify norm=1.0/2.0 to use customized p-norm normalization. Defaults to 'slaney'.
        ref_value (float, optional): The reference value. If smaller than 1.0, the db level of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. Defaults to 1.0.
        amin (float, optional): The minimum value of input magnitude. Defaults to 1e-10.
        top_db (Optional[float], optional): The maximum db value of spectrogram. Defaults to None.
        dtype (str, optional): Data type of input and window. Defaults to 'float32'.
Y
YangZhou 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of LogMelSpectrogram.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.audio.features import LogMelSpectrogram

            sample_rate = 16000
            wav_duration = 0.5
            num_channels = 1
            num_frames = sample_rate * wav_duration
            wav_data = paddle.linspace(-1.0, 1.0, num_frames) * 0.1
            waveform = wav_data.tile([num_channels, 1])

            feature_extractor = LogMelSpectrogram(sr=sample_rate, n_fft=512, window = 'hann', power = 1.0)
            feats = feature_extractor(waveform)
247 248
    """

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    def __init__(
        self,
        sr: int = 22050,
        n_fft: int = 512,
        hop_length: Optional[int] = None,
        win_length: Optional[int] = None,
        window: str = 'hann',
        power: float = 2.0,
        center: bool = True,
        pad_mode: str = 'reflect',
        n_mels: int = 64,
        f_min: float = 50.0,
        f_max: Optional[float] = None,
        htk: bool = False,
        norm: Union[str, float] = 'slaney',
        ref_value: float = 1.0,
        amin: float = 1e-10,
        top_db: Optional[float] = None,
        dtype: str = 'float32',
    ) -> None:
269
        super().__init__()
270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        self._melspectrogram = MelSpectrogram(
            sr=sr,
            n_fft=n_fft,
            hop_length=hop_length,
            win_length=win_length,
            window=window,
            power=power,
            center=center,
            pad_mode=pad_mode,
            n_mels=n_mels,
            f_min=f_min,
            f_max=f_max,
            htk=htk,
            norm=norm,
            dtype=dtype,
        )
287 288 289 290 291 292 293 294 295 296 297 298 299 300

        self.ref_value = ref_value
        self.amin = amin
        self.top_db = top_db

    def forward(self, x: Tensor) -> Tensor:
        """
        Args:
            x (Tensor): Tensor of waveforms with shape `(N, T)`

        Returns:
            Tensor: Log mel spectrograms with shape `(N, n_mels, num_frames)`.
        """
        mel_feature = self._melspectrogram(x)
301 302 303 304 305 306
        log_mel_feature = power_to_db(
            mel_feature,
            ref_value=self.ref_value,
            amin=self.amin,
            top_db=self.top_db,
        )
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
        return log_mel_feature


class MFCC(nn.Layer):
    """Compute mel frequency cepstral coefficients(MFCCs) feature of given waveforms.

    Args:
        sr (int, optional): Sample rate. Defaults to 22050.
        n_mfcc (int, optional): [description]. Defaults to 40.
        n_fft (int, optional): The number of frequency components of the discrete Fourier transform. Defaults to 512.
        hop_length (Optional[int], optional): The hop length of the short time FFT. If `None`, it is set to `win_length//4`. Defaults to None.
        win_length (Optional[int], optional): The window length of the short time FFT. If `None`, it is set to same as `n_fft`. Defaults to None.
        window (str, optional): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'. Defaults to 'hann'.
        power (float, optional): Exponent for the magnitude spectrogram. Defaults to 2.0.
        center (bool, optional): Whether to pad `x` to make that the :math:`t \times hop\\_length` at the center of `t`-th frame. Defaults to True.
        pad_mode (str, optional): Choose padding pattern when `center` is `True`. Defaults to 'reflect'.
        n_mels (int, optional): Number of mel bins. Defaults to 64.
        f_min (float, optional): Minimum frequency in Hz. Defaults to 50.0.
        f_max (Optional[float], optional): Maximum frequency in Hz. Defaults to None.
        htk (bool, optional): Use HTK formula in computing fbank matrix. Defaults to False.
        norm (Union[str, float], optional): Type of normalization in computing fbank matrix. Slaney-style is used by default. You can specify norm=1.0/2.0 to use customized p-norm normalization. Defaults to 'slaney'.
        ref_value (float, optional): The reference value. If smaller than 1.0, the db level of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. Defaults to 1.0.
        amin (float, optional): The minimum value of input magnitude. Defaults to 1e-10.
        top_db (Optional[float], optional): The maximum db value of spectrogram. Defaults to None.
        dtype (str, optional): Data type of input and window. Defaults to 'float32'.
Y
YangZhou 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of MFCC.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.audio.features import MFCC

            sample_rate = 16000
            wav_duration = 0.5
            num_channels = 1
            num_frames = sample_rate * wav_duration
            wav_data = paddle.linspace(-1.0, 1.0, num_frames) * 0.1
            waveform = wav_data.tile([num_channels, 1])

            feature_extractor = MFCC(sr=sample_rate, n_fft=512, window = 'hann')
            feats = feature_extractor(waveform)
351 352
    """

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    def __init__(
        self,
        sr: int = 22050,
        n_mfcc: int = 40,
        n_fft: int = 512,
        hop_length: Optional[int] = None,
        win_length: Optional[int] = None,
        window: str = 'hann',
        power: float = 2.0,
        center: bool = True,
        pad_mode: str = 'reflect',
        n_mels: int = 64,
        f_min: float = 50.0,
        f_max: Optional[float] = None,
        htk: bool = False,
        norm: Union[str, float] = 'slaney',
        ref_value: float = 1.0,
        amin: float = 1e-10,
        top_db: Optional[float] = None,
        dtype: str = 'float32',
    ) -> None:
374
        super().__init__()
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        assert (
            n_mfcc <= n_mels
        ), 'n_mfcc cannot be larger than n_mels: %d vs %d' % (n_mfcc, n_mels)
        self._log_melspectrogram = LogMelSpectrogram(
            sr=sr,
            n_fft=n_fft,
            hop_length=hop_length,
            win_length=win_length,
            window=window,
            power=power,
            center=center,
            pad_mode=pad_mode,
            n_mels=n_mels,
            f_min=f_min,
            f_max=f_max,
            htk=htk,
            norm=norm,
            ref_value=ref_value,
            amin=amin,
            top_db=top_db,
            dtype=dtype,
        )
397 398 399 400 401 402 403 404 405 406 407 408
        self.dct_matrix = create_dct(n_mfcc=n_mfcc, n_mels=n_mels, dtype=dtype)
        self.register_buffer('dct_matrix', self.dct_matrix)

    def forward(self, x: Tensor) -> Tensor:
        """
        Args:
            x (Tensor): Tensor of waveforms with shape `(N, T)`

        Returns:
            Tensor: Mel frequency cepstral coefficients with shape `(N, n_mfcc, num_frames)`.
        """
        log_mel_feature = self._log_melspectrogram(x)
409 410 411 412 413
        mfcc = paddle.matmul(
            log_mel_feature.transpose((0, 2, 1)), self.dct_matrix
        ).transpose(
            (0, 2, 1)
        )  # (B, n_mels, L)
414
        return mfcc