hierarchical_sigmoid_op.cc 4.7 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "hierarchical_sigmoid_op.h"

namespace paddle {
namespace operators {

/**
 * Organize the classes into a binary tree. At each node, a sigmoid function
 * is used to calculate the probability of belonging to the right branch.
 * This idea is from "F. Morin, Y. Bengio (AISTATS 05):
 * Hierarchical Probabilistic Neural Network Language Model."
 *
 * Here we uses a simple way of making the binary tree.
 * Assuming the number of classes C = 6,
 * The classes are organized as a binary tree in the following way:
 *
 * @code{.py}
 * *-*-*- 2
 * | | |- 3
 * | |
 * | |-*- 4
 * |   |- 5
 * |
 * |-*- 0
 *   |- 1
 * @endcode
 *
 * where * indicates an internal node, and each leaf node represents a class.
 * - Node 0 ... C-2 are internal nodes.
 * - Node C-1 ... 2C-2 are leaf nodes.
 * - Class c is represented by leaf node \f$c+C-1\f$.
 *
 * We assign an id for each node:
 * - the id of root be 0.
 * - the left child of a node i is 2*i+1.
 * - the right child of a node i is 2*i+2.
 *
 * It's easy to see that:
 * - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
 * - the j-th level ancestor of node i is
 * \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
 * - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
 *
 */

class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
Yancey1989 已提交
63
    PADDLE_ENFORCE(ctx->hasInput("X"), "Input(X) should not be null.");
Y
Yancey1989 已提交
64 65
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");
Y
Yancey1989 已提交
66 67
    const int64_t batch_size = ctx->GetInputDim("X")[0];
    std::vector<int64_t> output_shape({batch_size, num_classes_ - 1});
Y
Yancey1989 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
};

class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {}
};

class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  HierarchicalSigmoidOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
Y
Yancey1989 已提交
84 85 86
             "(Tensor, required) The input Tensor, which the shape is"
             "[N * D], which N is the size of mini-batch,"
             "D is the embded size");
Y
Yancey1989 已提交
87 88
    AddInput("Parameters",
             "(Tensor, required), The parameters of hierarchical "
Y
Yancey1989 已提交
89 90
             "sigmoid operator, each of them is s a 3-D tensor, the shape is"
             "[N, num_classes - 1, D]");
Y
Yancey1989 已提交
91 92
    AddInput("Label",
             "(Tensor, required), The labels of training data. It's a"
Y
Yancey1989 已提交
93
             "1-D tensor, which the shape is [1, N]");
Y
Yancey1989 已提交
94 95
    AddInput("Bias",
             "(Tensor, optional), The bias is a 1-D tensor, "
Y
Yancey1989 已提交
96 97 98 99 100
             "which is applied to the output, the shape is"
             "[1, num_classes -1]");
    AddOutput("Out",
              "(Tensor, required) The output of hierarchical sigmoid operator."
              "the shape is [N, 1]");
Y
Yancey1989 已提交
101
    AddAttr<int>("num_classes", "(int, required)", "The number of classes");
Y
Yancey1989 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    AddComment(R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
At each node, a sigmoid function is used to caculate the probability of 
belonging to the right branch. This idea is from 
"F. Morin, Y. Bengio (AISTATS 05): 
Hierarchical Probabilistic Neural Network Language Model."
      )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(hierarchical_sigmoid, ops::HierarchicalSigmoidOp,
            ops::HierarchicalSigmoidOpMaker, hierarchical_sigmoid_grad,
            ops::HierarchicalSigmoidGradOp);
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid_grad,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUPlace, float>);