beam_search_decode_op.cc 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/beam_search_decode_op.h"
#include "paddle/fluid/platform/device_context.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
struct BeamSearchDecodeFunctor {
  BeamSearchDecodeFunctor(const LoDTensorArray& step_ids,
                          const LoDTensorArray& step_scores,
                          LoDTensor* id_tensor, LoDTensor* score_tensor)
      : step_ids_(step_ids),
        step_scores_(step_scores),
        id_tensor_(id_tensor),
        score_tensor_(score_tensor) {}

  template <typename T>
  void operator()() const;

  const LoDTensorArray& step_ids_;
  const LoDTensorArray& step_scores_;
  LoDTensor* id_tensor_;
  LoDTensor* score_tensor_;
};

template <typename T>
void BeamSearchDecodeFunctor::operator()() const {
  BeamSearchDecoder<T> beam_search_decoder;
  beam_search_decoder.PackAllSteps(step_ids_, step_scores_, id_tensor_,
                                   score_tensor_);
}

template <>
void BeamSearchDecodeFunctor::operator()<bool>() const {
  PADDLE_THROW("beam search decode op does not support bool!");
}

51 52 53 54 55 56 57
class BeamSearchDecodeOp : public framework::OperatorBase {
 public:
  BeamSearchDecodeOp(const std::string& type,
                     const framework::VariableNameMap& inputs,
                     const framework::VariableNameMap& outputs,
                     const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
58 59 60 61

 private:
  void RunImpl(const framework::Scope& scope,
               const platform::Place& dev_place) const override {
62 63
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(dev_place);
64

65
    framework::ExecutionContext ctx(*this, scope, dev_ctx);
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    const LoDTensorArray* ids = ctx.Input<LoDTensorArray>("Ids");
    const LoDTensorArray* scores = ctx.Input<LoDTensorArray>("Scores");
    const size_t step_num = ids->size();
    PADDLE_ENFORCE_GT(step_num, 0UL,
                      "beam search steps should be larger than 0");
    const size_t source_num = ids->at(0).lod().at(0).size() - 1;
    PADDLE_ENFORCE_GT(source_num, 0UL, "source num should be larger than 0");

    for (size_t i = 0; i < step_num; ++i) {
      PADDLE_ENFORCE_EQ(ids->at(i).lod().size(), 2UL,
                        "Level of LodTensor should be 2");
    }

    // prepare output
    LoDTensor* sentenceIds = ctx.Output<LoDTensor>("SentenceIds");
    LoDTensor* sentenceScores = ctx.Output<LoDTensor>("SentenceScores");

84 85 86
    framework::VisitDataType(
        framework::ToDataType(scores->at(0).type()),
        BeamSearchDecodeFunctor(*ids, *scores, sentenceIds, sentenceScores));
87 88 89 90 91
  }
};

class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
92 93
  BeamSearchDecodeOpProtoMaker(OpProto* proto, OpAttrChecker* op_checker)
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    AddInput("Ids",
             "(LodTensorArray)"
             "score of the candidate words in each step");
    AddInput("Scores",
             "(LodTensorArray)"
             "score of the candidate words in each step");
    AddOutput("SentenceIds",
              "(LodTensor)"
              "All possible result sentences of word ids");
    AddOutput("SentenceScores",
              "(LodTensor)"
              "All possible result sentences of word scores");
    AddComment(R"DOC(
Pack the result of Beam search op into SentenceIds and SentenceScores.
)DOC");
  }
};

class BeamSearchDecodeInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* context) const override {
    PADDLE_ENFORCE(context->HasInput("Ids"),
                   "BeamSearchDecodeOp must has input Ids");
    PADDLE_ENFORCE(context->HasInput("Scores"),
                   "BeamSearchDecodeOp must has input Scores");
    PADDLE_ENFORCE(context->HasOutput("SentenceIds"),
                   "BeamSearchDecodeOp must has output SentenceIds");
    PADDLE_ENFORCE(context->HasOutput("SentenceScores"),
                   "BeamSearchDecodeOp must has output SentenceScores");
  }
};

class BeamSearchDecodeInferVarType : public framework::VarTypeInference {
 public:
128 129
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
130
    for (auto& o : op_desc.Output("SentenceIds")) {
131
      block->Var(o)->SetType(framework::proto::VarDesc::LOD_TENSOR);
132 133
    }
    for (auto& o : op_desc.Output("SentenceScores")) {
134
      block->Var(o)->SetType(framework::proto::VarDesc::LOD_TENSOR);
135 136 137 138 139 140 141 142 143 144 145 146
    }
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(beam_search_decode, paddle::operators::BeamSearchDecodeOp,
                  paddle::operators::BeamSearchDecodeOpProtoMaker,
                  paddle::operators::BeamSearchDecodeInferShape,
                  paddle::operators::BeamSearchDecodeInferVarType,
                  paddle::framework::EmptyGradOpMaker);
新手
引导
客服 返回
顶部