test_egr_python_api.py 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid.core as core
import paddle
import numpy as np
18
from paddle.fluid.framework import _test_eager_guard, EagerParamBase, _in_eager_mode
J
Jiabin Yang 已提交
19
from paddle.fluid.data_feeder import convert_dtype
20
import unittest
21
import copy
22
import paddle.compat as cpt
23 24 25 26


class EagerScaleTestCase(unittest.TestCase):
    def test_scale_base(self):
J
Jiabin Yang 已提交
27
        with _test_eager_guard():
28 29 30 31 32 33 34 35 36 37 38 39
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            tensor = paddle.to_tensor(arr, 'float32', core.CPUPlace())
            print(tensor)
            tensor = core.eager.scale(tensor, 2.0, 0.9, True, False)
            for i in range(0, 100):
                tensor = core.eager.scale(tensor, 2.0, 0.9, True, False)
            print(tensor)
            self.assertEqual(tensor.shape, [4, 16, 16, 32])
            self.assertEqual(tensor.stop_gradient, True)

    def test_retain_grad_and_run_backward(self):
J
Jiabin Yang 已提交
40
        with _test_eager_guard():
41 42 43 44 45 46 47 48 49
            paddle.set_device("cpu")

            input_data = np.ones([4, 16, 16, 32]).astype('float32')
            data_eager = paddle.to_tensor(input_data, 'float32',
                                          core.CPUPlace(), False)

            grad_data = np.ones([4, 16, 16, 32]).astype('float32')
            grad_eager = paddle.to_tensor(grad_data, 'float32', core.CPUPlace())

50
            data_eager.retain_grads()
51 52 53

            out_eager = core.eager.scale(data_eager, 1.0, 0.9, True, True)
            self.assertFalse(data_eager.grad._is_initialized())
54
            out_eager.backward(grad_eager, False)
55 56 57
            self.assertTrue(data_eager.grad._is_initialized())
            self.assertTrue(np.array_equal(data_eager.grad.numpy(), input_data))

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    def test_retain_grad_and_run_backward_raises(self):
        with _test_eager_guard():
            paddle.set_device("cpu")

            input_data = np.ones([4, 16, 16, 32]).astype('float32')
            data_eager = paddle.to_tensor(input_data, 'float32',
                                          core.CPUPlace(), False)

            grad_data = np.ones([4, 16, 16, 32]).astype('float32')
            grad_data2 = np.ones([4, 16]).astype('float32')
            grad_eager = paddle.to_tensor(grad_data, 'float32', core.CPUPlace())
            grad_eager2 = paddle.to_tensor(grad_data2, 'float32',
                                           core.CPUPlace())

            data_eager.retain_grads()

            out_eager = core.eager.scale(data_eager, 1.0, 0.9, True, True)
            self.assertFalse(data_eager.grad._is_initialized())
            with self.assertRaisesRegexp(
                    AssertionError,
                    "The type of grad_tensor must be paddle.Tensor"):
                out_eager.backward(grad_data, False)

            with self.assertRaisesRegexp(
                    AssertionError,
                    "Tensor shape not match, Tensor of grad_tensor /*"):
                out_eager.backward(grad_eager2, False)

86 87

class EagerDtypeTestCase(unittest.TestCase):
J
Jiabin Yang 已提交
88 89
    def check_to_tesnsor_and_numpy(self, dtype, proto_dtype):
        with _test_eager_guard():
90 91
            arr = np.random.random([4, 16, 16, 32]).astype(dtype)
            tensor = paddle.to_tensor(arr, dtype)
J
Jiabin Yang 已提交
92
            self.assertEqual(tensor.dtype, proto_dtype)
93 94 95
            self.assertTrue(np.array_equal(arr, tensor.numpy()))

    def test_dtype_base(self):
J
Jiabin Yang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109
        print("Test_dtype")
        self.check_to_tesnsor_and_numpy('bool', core.VarDesc.VarType.BOOL)
        self.check_to_tesnsor_and_numpy('int8', core.VarDesc.VarType.INT8)
        self.check_to_tesnsor_and_numpy('uint8', core.VarDesc.VarType.UINT8)
        self.check_to_tesnsor_and_numpy('int16', core.VarDesc.VarType.INT16)
        self.check_to_tesnsor_and_numpy('int32', core.VarDesc.VarType.INT32)
        self.check_to_tesnsor_and_numpy('int64', core.VarDesc.VarType.INT64)
        self.check_to_tesnsor_and_numpy('float16', core.VarDesc.VarType.FP16)
        self.check_to_tesnsor_and_numpy('float32', core.VarDesc.VarType.FP32)
        self.check_to_tesnsor_and_numpy('float64', core.VarDesc.VarType.FP64)
        self.check_to_tesnsor_and_numpy('complex64',
                                        core.VarDesc.VarType.COMPLEX64)
        self.check_to_tesnsor_and_numpy('complex128',
                                        core.VarDesc.VarType.COMPLEX128)
110 111


112
class EagerTensorPropertiesAndMethodsTestCase(unittest.TestCase):
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    def constructor(self, place):
        egr_tensor = core.eager.EagerTensor()
        self.assertEqual(egr_tensor.persistable, False)
        self.assertTrue("generated" in egr_tensor.name)
        self.assertEqual(egr_tensor.shape, [])
        self.assertEqual(egr_tensor.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor.stop_gradient, True)

        egr_tensor0 = core.eager.EagerTensor(
            core.VarDesc.VarType.FP32, [4, 16, 16, 32], "test_eager_tensor",
            core.VarDesc.VarType.LOD_TENSOR, True)
        self.assertEqual(egr_tensor0.persistable, True)
        self.assertEqual(egr_tensor0.name, "test_eager_tensor")
        self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP32)

        arr0 = np.random.rand(4, 16, 16, 32).astype('float32')
        egr_tensor1 = core.eager.EagerTensor(arr0, place, True, False,
                                             "numpy_tensor1", False)
        self.assertEqual(egr_tensor1.persistable, True)
        self.assertEqual(egr_tensor1.name, "numpy_tensor1")
        self.assertEqual(egr_tensor1.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor1.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor1.stop_gradient, False)
        self.assertTrue(egr_tensor1.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor1.numpy(), arr0))

        arr1 = np.random.randint(100, size=(4, 16, 16, 32), dtype=np.int64)
        egr_tensor2 = core.eager.EagerTensor(arr1, place, False, True,
                                             "numpy_tensor2", True)
        self.assertEqual(egr_tensor2.persistable, False)
        self.assertEqual(egr_tensor2.name, "numpy_tensor2")
        self.assertEqual(egr_tensor2.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor2.dtype, core.VarDesc.VarType.INT64)
        self.assertEqual(egr_tensor2.stop_gradient, True)
        self.assertTrue(egr_tensor2.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor2.numpy(), arr1))

        arr2 = np.random.rand(4, 16, 16, 32, 64).astype('float32')
        egr_tensor3 = core.eager.EagerTensor(arr2)
        self.assertEqual(egr_tensor3.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor3.name)
        self.assertEqual(egr_tensor3.shape, [4, 16, 16, 32, 64])
        self.assertEqual(egr_tensor3.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor3.stop_gradient, True)
        self.assertTrue(
            egr_tensor3.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(np.array_equal(egr_tensor3.numpy(), arr2))

        egr_tensor3.stop_gradient = False
        egr_tensor4 = core.eager.EagerTensor(egr_tensor3)
        self.assertEqual(egr_tensor4.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor4.name)
        self.assertEqual(egr_tensor4.shape, egr_tensor3.shape)
        self.assertEqual(egr_tensor4.dtype, egr_tensor3.dtype)
        self.assertEqual(egr_tensor4.stop_gradient, True)
        self.assertTrue(
            egr_tensor4.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(
            np.array_equal(egr_tensor4.numpy(), egr_tensor3.numpy()))

        arr4 = np.random.rand(4, 16, 16, 32).astype('float32')
        egr_tensor5 = core.eager.EagerTensor(arr4, place)
        self.assertEqual(egr_tensor5.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor5.name)
        self.assertEqual(egr_tensor5.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor5.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor5.stop_gradient, True)
        self.assertTrue(egr_tensor5.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor5.numpy(), arr4))

        egr_tensor6 = core.eager.EagerTensor(egr_tensor5, core.CPUPlace())
        self.assertEqual(egr_tensor6.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor6.name)
        self.assertEqual(egr_tensor6.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor6.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor6.stop_gradient, True)
        self.assertEqual(egr_tensor6.place.is_cpu_place(), True)
        self.assertTrue(
            np.array_equal(egr_tensor6.numpy(), egr_tensor5.numpy()))

        egr_tensor7 = core.eager.EagerTensor(arr4, place, True)
        self.assertEqual(egr_tensor7.persistable, True)
        self.assertTrue("generated_tensor" in egr_tensor7.name)
        self.assertEqual(egr_tensor7.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor7.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor7.stop_gradient, True)
        self.assertTrue(egr_tensor7.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor7.numpy(), arr4))

        egr_tensor8 = core.eager.EagerTensor(egr_tensor6, place, "egr_tensor8")
        self.assertEqual(egr_tensor8.persistable, False)
        self.assertEqual(egr_tensor8.name, "egr_tensor8")
        self.assertEqual(egr_tensor8.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor8.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor8.stop_gradient, True)
        self.assertTrue(egr_tensor8.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor8.numpy(), egr_tensor5.numpy()))

        egr_tensor9 = core.eager.EagerTensor(arr4, place, True, True)
        self.assertEqual(egr_tensor9.persistable, True)
        self.assertTrue("generated_tensor" in egr_tensor9.name)
        self.assertEqual(egr_tensor9.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor9.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor9.stop_gradient, True)
        self.assertTrue(egr_tensor9.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor9.numpy(), arr4))

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        x = np.random.rand(3, 3).astype('float32')
        t = paddle.fluid.Tensor()
        t.set(x, paddle.fluid.CPUPlace())
        egr_tensor10 = core.eager.EagerTensor(t, place)
        self.assertEqual(egr_tensor10.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor10.name)
        self.assertEqual(egr_tensor10.shape, [3, 3])
        self.assertEqual(egr_tensor10.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor10.stop_gradient, True)
        self.assertTrue(egr_tensor10.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor10.numpy(), x))

        egr_tensor11 = core.eager.EagerTensor(t, place, "framework_constructed")
        self.assertEqual(egr_tensor11.persistable, False)
        self.assertTrue("framework_constructed" in egr_tensor11.name)
        self.assertEqual(egr_tensor11.shape, [3, 3])
        self.assertEqual(egr_tensor11.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor11.stop_gradient, True)
        self.assertTrue(egr_tensor11.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor11.numpy(), x))

        egr_tensor12 = core.eager.EagerTensor(t)
        self.assertEqual(egr_tensor12.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor12.name)
        self.assertEqual(egr_tensor12.shape, [3, 3])
        self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor12.stop_gradient, True)
        self.assertTrue(egr_tensor12.place._equals(paddle.fluid.CPUPlace()))
        self.assertTrue(np.array_equal(egr_tensor12.numpy(), x))

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        with self.assertRaisesRegexp(
                ValueError, "The shape of Parameter should not be None"):
            eager_param = EagerParamBase(shape=None, dtype="float32")

        with self.assertRaisesRegexp(
                ValueError, "The dtype of Parameter should not be None"):
            eager_param = EagerParamBase(shape=[1, 1], dtype=None)

        with self.assertRaisesRegexp(
                ValueError,
                "The dimensions of shape for Parameter must be greater than 0"):
            eager_param = EagerParamBase(shape=[], dtype="float32")

        with self.assertRaisesRegexp(
                ValueError,
                "Each dimension of shape for Parameter must be greater than 0, but received /*"
        ):
            eager_param = EagerParamBase(shape=[-1], dtype="float32")

        eager_param = EagerParamBase(shape=[1, 1], dtype="float32")
        self.assertTrue(eager_param.trainable)
        eager_param.trainable = False
        self.assertFalse(eager_param.trainable)
        with self.assertRaisesRegexp(
                ValueError,
                "The type of trainable MUST be bool, but the type is /*"):
            eager_param.trainable = "False"

282 283 284 285 286 287 288 289 290 291
    def test_constructor(self):
        print("Test_constructor")
        paddle.set_device("cpu")
        place_list = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            place_list.append(core.CUDAPlace(0))
        with _test_eager_guard():
            for p in place_list:
                self.constructor(p)

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    def constructor_with_kwargs(self, place):
        # init EagerTensor by Python array
        arr = np.random.rand(4, 16, 16, 32).astype('float32')

        egr_tensor0 = core.eager.EagerTensor(value=arr)
        self.assertEqual(egr_tensor0.persistable, False)
        self.assertTrue("generated" in egr_tensor0.name)
        self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
        self.assertTrue(
            egr_tensor0.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor0.stop_gradient, True)

        egr_tensor1 = core.eager.EagerTensor(value=arr, place=place)
        self.assertEqual(egr_tensor1.persistable, False)
        self.assertTrue("generated" in egr_tensor1.name)
        self.assertEqual(egr_tensor1.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor1.place._equals(place))
        self.assertEqual(egr_tensor1.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor1.stop_gradient, True)

        egr_tensor2 = core.eager.EagerTensor(arr, place=place)
        self.assertEqual(egr_tensor2.persistable, False)
        self.assertTrue("generated" in egr_tensor2.name)
        self.assertEqual(egr_tensor2.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor2.place._equals(place))
        self.assertEqual(egr_tensor2.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor2.stop_gradient, True)

        egr_tensor3 = core.eager.EagerTensor(
            arr, place=place, name="new_eager_tensor")
        self.assertEqual(egr_tensor3.persistable, False)
        self.assertTrue("new_eager_tensor" in egr_tensor3.name)
        self.assertEqual(egr_tensor3.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor3.place._equals(place))
        self.assertEqual(egr_tensor3.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor3.stop_gradient, True)

        egr_tensor4 = core.eager.EagerTensor(
            arr, place=place, persistable=True, name="new_eager_tensor")
        self.assertEqual(egr_tensor4.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor4.name)
        self.assertEqual(egr_tensor4.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor4.place._equals(place))
        self.assertEqual(egr_tensor4.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor4.stop_gradient, True)

        egr_tensor5 = core.eager.EagerTensor(
            arr,
            core.CPUPlace(),
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True)
        self.assertEqual(egr_tensor5.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor5.name)
        self.assertEqual(egr_tensor5.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor5.place.is_cpu_place())
        self.assertEqual(egr_tensor5.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor5.stop_gradient, True)

        egr_tensor6 = core.eager.EagerTensor(
            arr,
            place=core.CPUPlace(),
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True)
        self.assertEqual(egr_tensor6.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor6.name)
        self.assertEqual(egr_tensor6.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor6.place.is_cpu_place())
        self.assertEqual(egr_tensor6.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor6.stop_gradient, True)

        egr_tensor7 = core.eager.EagerTensor(
            arr,
            place=place,
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True)
        self.assertEqual(egr_tensor7.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor7.name)
        self.assertEqual(egr_tensor7.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor7.place._equals(place))
        self.assertEqual(egr_tensor7.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor7.stop_gradient, True)

        egr_tensor8 = core.eager.EagerTensor(
            arr,
            place=place,
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True,
            stop_gradient=False)
        self.assertEqual(egr_tensor8.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor8.name)
        self.assertEqual(egr_tensor8.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor8.place._equals(place))
        self.assertEqual(egr_tensor8.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor8.stop_gradient, False)

        egr_tensor9 = core.eager.EagerTensor(
            arr, place, True, True, "new_eager_tensor", stop_gradient=False)
        self.assertEqual(egr_tensor9.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor9.name)
        self.assertEqual(egr_tensor9.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor9.place._equals(place))
        self.assertEqual(egr_tensor9.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor9.stop_gradient, False)

        egr_tensor10 = core.eager.EagerTensor(
            arr,
            place,
            True,
            True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor10.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor10.name)
        self.assertEqual(egr_tensor10.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor10.place._equals(place))
        self.assertEqual(egr_tensor10.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor10.stop_gradient, False)

        egr_tensor11 = core.eager.EagerTensor(
            arr,
            place,
            True,
            zero_copy=True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor11.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor11.name)
        self.assertEqual(egr_tensor11.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor11.place._equals(place))
        self.assertEqual(egr_tensor11.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor11.stop_gradient, False)

        egr_tensor12 = core.eager.EagerTensor(
            arr,
            place,
            persistable=True,
            zero_copy=True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor12.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor12.name)
        self.assertEqual(egr_tensor12.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor12.place._equals(place))
        self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor12.stop_gradient, False)

        egr_tensor13 = core.eager.EagerTensor(
            value=arr,
            place=place,
            persistable=True,
            zero_copy=True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor13.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor13.name)
        self.assertEqual(egr_tensor13.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor13.place._equals(place))
        self.assertEqual(egr_tensor13.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor13.stop_gradient, False)

        # special case
        egr_tensor14 = core.eager.EagerTensor(
            dtype=core.VarDesc.VarType.FP32,
            dims=[4, 16, 16, 32],
            name="special_eager_tensor",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True)
        self.assertEqual(egr_tensor14.persistable, True)
        self.assertEqual(egr_tensor14.name, "special_eager_tensor")
        self.assertEqual(egr_tensor14.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor14.dtype, core.VarDesc.VarType.FP32)

        # init EagerTensor by EagerTensor
        egr_tensor15 = core.eager.EagerTensor(value=egr_tensor4)
        self.assertEqual(egr_tensor15.persistable, True)
        self.assertTrue("generated" in egr_tensor15.name)
        self.assertEqual(egr_tensor15.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor15.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor15.stop_gradient, True)
        self.assertTrue(
            egr_tensor15.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(
            np.array_equal(egr_tensor15.numpy(), egr_tensor4.numpy()))

        egr_tensor16 = core.eager.EagerTensor(
            value=egr_tensor4, name="new_eager_tensor")
        self.assertEqual(egr_tensor16.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor16.name)
        self.assertEqual(egr_tensor16.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor16.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor16.stop_gradient, True)
        self.assertTrue(
            egr_tensor16.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(
            np.array_equal(egr_tensor16.numpy(), egr_tensor4.numpy()))

        egr_tensor17 = core.eager.EagerTensor(
            value=egr_tensor4,
            place=place,
            name="new_eager_tensor", )
        self.assertEqual(egr_tensor17.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor17.name)
        self.assertEqual(egr_tensor17.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor17.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor17.stop_gradient, True)
        self.assertTrue(egr_tensor17.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor17.numpy(), egr_tensor4.numpy()))

        egr_tensor18 = core.eager.EagerTensor(
            egr_tensor4,
            place=place,
            name="new_eager_tensor", )
        self.assertEqual(egr_tensor18.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor18.name)
        self.assertEqual(egr_tensor18.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor18.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor18.stop_gradient, True)
        self.assertTrue(egr_tensor18.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor18.numpy(), egr_tensor4.numpy()))

        egr_tensor19 = core.eager.EagerTensor(
            egr_tensor4,
            place,
            name="new_eager_tensor", )
        self.assertEqual(egr_tensor19.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor19.name)
        self.assertEqual(egr_tensor19.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor19.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor19.stop_gradient, True)
        self.assertTrue(egr_tensor19.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor19.numpy(), egr_tensor4.numpy()))

        # init eager tensor by framework tensor
        x = np.random.rand(3, 3).astype('float32')
        t = paddle.fluid.Tensor()
        t.set(x, paddle.fluid.CPUPlace())
        egr_tensor20 = core.eager.EagerTensor(value=t)
        self.assertEqual(egr_tensor20.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor20.name)
        self.assertEqual(egr_tensor20.shape, [3, 3])
        self.assertEqual(egr_tensor20.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor20.stop_gradient, True)
        self.assertTrue(
            egr_tensor20.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(np.array_equal(egr_tensor20.numpy(), x))

        egr_tensor21 = core.eager.EagerTensor(value=t, place=place)
        self.assertEqual(egr_tensor21.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor21.name)
        self.assertEqual(egr_tensor21.shape, [3, 3])
        self.assertEqual(egr_tensor21.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor21.stop_gradient, True)
        self.assertTrue(egr_tensor21.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor21.numpy(), x))

        egr_tensor22 = core.eager.EagerTensor(t, place=place)
        self.assertEqual(egr_tensor22.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor22.name)
        self.assertEqual(egr_tensor22.shape, [3, 3])
        self.assertEqual(egr_tensor22.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor22.stop_gradient, True)
        self.assertTrue(egr_tensor22.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor22.numpy(), x))

        egr_tensor23 = core.eager.EagerTensor(
            t, place, name="from_framework_tensor")
        self.assertEqual(egr_tensor23.persistable, False)
        self.assertTrue("from_framework_tensor" in egr_tensor23.name)
        self.assertEqual(egr_tensor23.shape, [3, 3])
        self.assertEqual(egr_tensor23.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor23.stop_gradient, True)
        self.assertTrue(egr_tensor23.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor23.numpy(), x))

        egr_tensor24 = core.eager.EagerTensor(
            value=t, place=place, name="from_framework_tensor")
        self.assertEqual(egr_tensor24.persistable, False)
        self.assertTrue("from_framework_tensor" in egr_tensor24.name)
        self.assertEqual(egr_tensor24.shape, [3, 3])
        self.assertEqual(egr_tensor24.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor24.stop_gradient, True)
        self.assertTrue(egr_tensor24.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor24.numpy(), x))

        # Bad usage
        # SyntaxError: positional argument follows keyword argument
        # egr_tensor25 = core.eager.EagerTensor(value=t, place) 

    def test_constructor_with_kwargs(self):
        print("Test_constructor_with_kwargs")
        paddle.set_device("cpu")
        place_list = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            place_list.append(core.CUDAPlace(0))
        with _test_eager_guard():
            for p in place_list:
                self.constructor_with_kwargs(p)

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    def test_copy_and_copy_to(self):
        print("Test_copy_and_copy_to")
        with _test_eager_guard():
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
            self.assertEqual(tensor.stop_gradient, True)
            tensor.stop_gradient = False
            print("Set persistable")
            tensor.persistable = False
            tensor1 = paddle.to_tensor(arr1, core.VarDesc.VarType.FP32,
                                       core.CPUPlace())
            tensor1.persistable = True
            self.assertEqual(tensor1.stop_gradient, True)
            self.assertTrue(np.array_equal(tensor.numpy(), arr))
            print("Test copy_")
            tensor.copy_(tensor1, True)
623
            self.assertEqual(tensor.persistable, False)
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
            self.assertEqual(tensor.shape, [4, 16])
            self.assertEqual(tensor.dtype, core.VarDesc.VarType.FP32)
            self.assertTrue(np.array_equal(tensor.numpy(), arr1))

            print("Test _copy_to")
            tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                       core.CPUPlace())
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            self.assertTrue(tensor2.place.is_cpu_place())
            tensor2.persistable = True
            tensor2.stop_gradient = False
            if core.is_compiled_with_cuda():
                tensor3 = tensor2._copy_to(True, core.CUDAPlace(0))
                self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
                self.assertTrue(tensor3.persistable, True)
                self.assertTrue(tensor3.stop_gradient, True)
                self.assertTrue(tensor3.place.is_gpu_place())
            else:
                tensor3 = tensor2._copy_to(True, core.CPUPlace())
                self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
                self.assertTrue(tensor3.persistable, True)
                self.assertTrue(tensor3.stop_gradient, True)
                self.assertTrue(tensor3.place.is_cpu_place())

648 649
    def test_share_buffer_to(self):
        with _test_eager_guard():
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = None
            tensor2 = None
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
            tensor3 = core.eager.EagerTensor()
            if core.is_compiled_with_cuda():
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CUDAPlace(0))
            else:
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CPUPlace())
665
            self.assertTrue(np.array_equal(tensor.numpy(), arr))
666 667 668 669 670 671 672 673 674 675
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            tensor2._share_buffer_to(tensor)
            self.assertTrue(np.array_equal(tensor.numpy(), arr2))
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            self.assertTrue(tensor._is_shared_buffer_with(tensor2))
            self.assertTrue(tensor2._is_shared_buffer_with(tensor))
            tensor._share_buffer_to(tensor3)
            self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
            self.assertTrue(tensor3._is_shared_buffer_with(tensor))

676
    def test_properties(self):
J
Jiabin Yang 已提交
677 678
        print("Test_properties")
        with _test_eager_guard():
679 680
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
J
Jiabin Yang 已提交
681 682
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
            self.assertEqual(tensor.shape, [4, 16, 16, 32])
            tensor.name = 'tensor_name_test'
            self.assertEqual(tensor.name, 'tensor_name_test')
            self.assertEqual(tensor.persistable, False)
            tensor.persistable = True
            self.assertEqual(tensor.persistable, True)
            tensor.persistable = False
            self.assertEqual(tensor.persistable, False)
            self.assertTrue(tensor.place.is_cpu_place())
            self.assertEqual(tensor._place_str, 'CPUPlace')
            self.assertEqual(tensor.stop_gradient, True)
            tensor.stop_gradient = False
            self.assertEqual(tensor.stop_gradient, False)
            tensor.stop_gradient = True
            self.assertEqual(tensor.stop_gradient, True)
698
            self.assertEqual(tensor.type, core.VarDesc.VarType.LOD_TENSOR)
699

J
Jiabin Yang 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
    def test_global_properties(self):
        print("Test_global_properties")
        self.assertFalse(core._in_eager_mode())
        with _test_eager_guard():
            self.assertTrue(core._in_eager_mode())
        self.assertFalse(core._in_eager_mode())

    def test_place_guard(self):
        core._enable_eager_mode()
        if core.is_compiled_with_cuda():
            paddle.set_device("gpu:0")
            with paddle.fluid.framework._dygraph_place_guard(core.CPUPlace()):
                self.assertTrue(core.eager._get_expected_place().is_cpu_place())
        else:
            paddle.set_device("cpu")
            with paddle.fluid.framework._dygraph_place_guard(core.CPUPlace()):
                self.assertTrue(core.eager._get_expected_place().is_cpu_place())
        core._disable_eager_mode()

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    def test_value(self):
        with _test_eager_guard():
            arr = np.random.rand(4, 16, 16, 32).astype('float64')

            egr_tensor0 = core.eager.EagerTensor(value=arr)
            self.assertEqual(egr_tensor0.persistable, False)
            self.assertTrue("generated" in egr_tensor0.name)
            self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
            self.assertTrue(
                egr_tensor0.place._equals(
                    paddle.fluid.framework._current_expected_place()))
            self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP64)
            self.assertEqual(egr_tensor0.stop_gradient, True)
            self.assertTrue(egr_tensor0.value().get_tensor()._dtype(),
                            core.VarDesc.VarType.FP64)
            self.assertTrue(egr_tensor0.value().get_tensor()._place(),
                            paddle.fluid.framework._current_expected_place())
            self.assertTrue(egr_tensor0.value().get_tensor()._is_initialized())

738

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
class EagerParamBaseUsageTestCase(unittest.TestCase):
    def test_print(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(3, 3, bias_attr=False)
            print(linear.weight)

    def test_copy(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(1, 3)
            linear_copy = copy.deepcopy(linear)
            linear_copy2 = linear.weight._copy_to(core.CPUPlace(), True)
            self.assertTrue(
                np.array_equal(linear.weight.numpy(),
                               linear_copy.weight.numpy()))
            self.assertTrue(
                np.array_equal(linear.weight.numpy(), linear_copy2.numpy()))

    def func_fp16_initilaizer(self):
        paddle.set_default_dtype("float16")
        linear1 = paddle.nn.Linear(1, 3, bias_attr=False)
        linear2 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.Uniform())
        linear3 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.TruncatedNormalInitializer())
        linear4 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.MSRAInitializer())
        res = [
            linear1.weight.numpy(), linear2.weight.numpy(),
            linear3.weight.numpy(), linear4.weight.numpy()
        ]
        paddle.set_default_dtype("float32")
        return res

    def test_fp16_initializer(self):
        res1 = list()
        res2 = list()
        paddle.seed(102)
        paddle.framework.random._manual_program_seed(102)
        with _test_eager_guard():
            res1 = self.func_fp16_initilaizer()
        res2 = self.func_fp16_initilaizer()

        for i in range(len(res1)):
            self.assertTrue(np.array_equal(res1[i], res2[i]))

    def func_layer_helper_base(self, value):
        base = paddle.fluid.layer_helper_base.LayerHelperBase("test_layer",
                                                              "test_layer")
        return base.to_variable(value).numpy()

    def func_base_to_variable(self, value):
        paddle.fluid.dygraph.base.to_variable(value)

    def test_to_variable(self):
        value = np.random.rand(4, 16, 16, 32).astype('float32')
        res1 = None
        res3 = None
        with _test_eager_guard():
            res1 = self.func_layer_helper_base(value)
            res3 = self.func_base_to_variable(value)
        res2 = self.func_layer_helper_base(value)
        res4 = self.func_base_to_variable(value)
        self.assertTrue(np.array_equal(res1, res2))
        self.assertTrue(np.array_equal(res3, res4))

813
    def test_backward_with_single_tensor(self):
814 815 816 817 818 819 820 821 822 823 824 825 826
        with _test_eager_guard():
            arr4 = np.random.rand(4, 16, 16, 32).astype('float32')
            egr_tensor12 = core.eager.EagerTensor(arr4, core.CPUPlace())
            egr_tensor12.retain_grads()
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            self.assertEqual(egr_tensor12.persistable, False)
            self.assertTrue("generated_tensor" in egr_tensor12.name)
            self.assertEqual(egr_tensor12.shape, [4, 16, 16, 32])
            self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(egr_tensor12.stop_gradient, True)
            self.assertTrue(egr_tensor12.place._equals(paddle.fluid.CPUPlace()))
            self.assertTrue(np.array_equal(egr_tensor12.numpy(), arr4))
            self.assertTrue(np.array_equal(egr_tensor12.gradient(), None))
827
            egr_tensor12.stop_gradient = False
828 829
            egr_tensor12.backward()
            self.assertTrue(np.array_equal(egr_tensor12.gradient(), arr))
830

831

832 833 834 835 836 837 838
class EagerGuardTestCase(unittest.TestCase):
    def test__test_eager_guard(self):
        tracer = paddle.fluid.dygraph.tracer.Tracer()
        with _test_eager_guard(tracer):
            self.assertTrue(_in_eager_mode())


839 840
if __name__ == "__main__":
    unittest.main()