attn_gemm.h 10.2 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13 14 15 16
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
18 19
#include "paddle/fluid/platform/float16.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
20
#include "paddle/phi/kernels/funcs/blas/blaslt_impl.cu.h"
21 22
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
23
#include "paddle/phi/kernels/funcs/fused_gemm_epilogue.h"
24
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
L
Li Min 已提交
25

26 27
namespace paddle {
namespace operators {
28

29 30 31 32 33
// support gemm-nt and gemm-nn, which is used in fused_attention_op.
template <typename T>
class AttnMatMul {
 public:
  // (m, n, k) = bsz_seq, output_size, input_size
L
Leo Chen 已提交
34
  AttnMatMul(const phi::GPUContext& dev_ctx,
35 36 37 38 39
             bool transA,
             bool transB,
             int bsz_seq,
             int output_size,
             int input_size,
40 41 42 43 44 45 46 47 48
             bool compute_bias)
      : dev_ctx_(dev_ctx),
        transA_(transA),
        transB_(transB),
        bsz_seq_(bsz_seq),
        output_size_(output_size),
        input_size_(input_size),
        compute_bias_(compute_bias) {}

49 50 51 52
  void ComputeForward(const phi::DenseTensor* weight,
                      const phi::DenseTensor* input,
                      const phi::DenseTensor* bias,
                      phi::DenseTensor* output,
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
                      phi::DenseTensor* bias_out,
                      bool fused = false) {
    VLOG(6) << "input.shape={" << input->dims() << "}, weight.shape={"
            << weight->dims() << "}, output.shape={" << output->dims()
            << "}, batch_size=" << bsz_seq_ << ", output_size=" << output_size_
            << ", input_size=" << input_size_ << ", transA=" << transA_
            << ", transB=" << transB_ << ", compute_bias=" << compute_bias_
            << ", fused=" << fused;

#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 11060
    if (compute_bias_ && fused) {
      PADDLE_ENFORCE_EQ(
          !output || output == bias_out,
          true,
          phi::errors::InvalidArgument(
              "The output (= input * weight) is expected to be nullptr or the "
              "same as bias_out when fused is true."));
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84
      phi::funcs::LinearWithCublasLt<T>::Run(
          dev_ctx_,
          input,                                      // x
          weight,                                     // y
          bias_out,                                   // out
          static_cast<const void*>(bias->data<T>()),  // bias
          nullptr,
          bsz_seq_,      // M
          output_size_,  // N
          input_size_,   // K
          transA_,
          transB_,
          phi::funcs::MatmulFusedType::kMatmulBias);

85 86 87 88
      return;
    }
#endif

89 90
    // Note: for blas.GEMM API in Paddle, it treats all inputs as row-major.
    // here: (transa, transb): nt, input * weight.
91 92
    CBLAS_TRANSPOSE transA = transA_ ? CblasTrans : CblasNoTrans;
    CBLAS_TRANSPOSE transB = transB_ ? CblasTrans : CblasNoTrans;
93 94 95
    T alpha = static_cast<T>(1.0);
    T beta = static_cast<T>(0.0);

96
    // (m, n, k) = bsz_seq, output_size, input_size, (input, weight, out)
L
Leo Chen 已提交
97
    auto blas = phi::funcs::GetBlas<phi::GPUContext, T>(dev_ctx_);
98 99 100 101 102 103 104 105 106 107
    blas.GEMM(transA,
              transB,
              bsz_seq_,
              output_size_,
              input_size_,
              alpha,
              input->data<T>(),
              weight->data<T>(),
              beta,
              output->data<T>());
108
    if (compute_bias_) {
109
      // bias_out = output + bias
110 111
      std::vector<const phi::DenseTensor*> ins = {output, bias};
      std::vector<phi::DenseTensor*> outs = {bias_out};
112
      phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
113
          dev_ctx_, ins, &outs, -1, phi::funcs::AddFunctor<T>());
114 115 116
    }
  }

117 118 119 120 121 122
  void ComputeBackward(const phi::DenseTensor* input,
                       const phi::DenseTensor* weight,
                       const phi::DenseTensor* d_output,
                       phi::DenseTensor* d_input,
                       phi::DenseTensor* d_weight,
                       phi::DenseTensor* d_bias,
123 124 125 126
                       bool use_addto = false,
                       bool fused = false) {
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 11060
    if (compute_bias_ && fused) {
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
      phi::funcs::ComputeFusedGemmEpilogueBackward<T>(dev_ctx_,
                                                      d_output,
                                                      input,
                                                      weight,
                                                      nullptr,
                                                      bsz_seq_,      // M
                                                      output_size_,  // N
                                                      input_size_,   // K
                                                      transA_,
                                                      transB_,
                                                      "none",
                                                      d_input,
                                                      d_weight,
                                                      d_bias,
                                                      use_addto);
142 143 144 145
      return;
    }
#endif

146
    T alpha = static_cast<T>(1.0);
147 148
    T beta_dA = use_addto ? static_cast<T>(1.0) : static_cast<T>(0.0);
    T beta_dB = static_cast<T>(0.0);
149

L
Leo Chen 已提交
150
    auto blas = phi::funcs::GetBlas<phi::GPUContext, T>(dev_ctx_);
151
    if (!transA_) {
152
      // forward: gemm-nt
153
      if (transB_) {
154 155 156 157 158 159 160
        // backward: gemm-tn, dB = (dC)^T * A
        if (d_weight) {
          int dB_m = output_size_;
          int dB_n = input_size_;
          int dB_k = bsz_seq_;

          T* dB_output_ptr = d_weight->data<T>();
161 162 163 164 165 166 167 168 169
          blas.GEMM(CblasTrans,
                    CblasNoTrans,
                    dB_m,
                    dB_n,
                    dB_k,
                    alpha,
                    d_output->data<T>(),
                    input->data<T>(),
                    beta_dB,
170 171 172 173 174 175 176 177 178 179
                    dB_output_ptr);
        }

        // backward: gemm-nn, dA = dC * B
        if (d_input) {
          int dA_m = bsz_seq_;
          int dA_n = input_size_;
          int dA_k = output_size_;

          T* dA_output_ptr = d_input->data<T>();
180 181 182 183 184 185 186 187 188
          blas.GEMM(CblasNoTrans,
                    CblasNoTrans,
                    dA_m,
                    dA_n,
                    dA_k,
                    alpha,
                    d_output->data<T>(),
                    weight->data<T>(),
                    beta_dA,
189 190
                    dA_output_ptr);
        }
191
      } else {  // fw: gemm-nn
192 193 194 195 196 197 198
        // backward: gemm-tn, dB = A^T * dC
        if (d_weight) {
          int dB_m = input_size_;
          int dB_n = output_size_;
          int dB_k = bsz_seq_;

          T* dB_output_ptr = d_weight->data<T>();
199 200 201 202 203 204 205 206 207
          blas.GEMM(CblasTrans,
                    CblasNoTrans,
                    dB_m,
                    dB_n,
                    dB_k,
                    alpha,
                    input->data<T>(),
                    d_output->data<T>(),
                    beta_dB,
208 209 210 211 212 213 214 215 216 217
                    dB_output_ptr);
        }

        // backward: gemm-nt, dA = dC * B^T
        if (d_input) {
          int dA_m = bsz_seq_;
          int dA_n = input_size_;
          int dA_k = output_size_;

          T* dA_output_ptr = d_input->data<T>();
218 219 220 221 222 223 224 225 226
          blas.GEMM(CblasNoTrans,
                    CblasTrans,
                    dA_m,
                    dA_n,
                    dA_k,
                    alpha,
                    d_output->data<T>(),
                    weight->data<T>(),
                    beta_dA,
227 228
                    dA_output_ptr);
        }
229 230 231
      }
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
232
          "AttnMatMul wrapper do not support (transA=T, transB=T/N)"
233 234
          "parameters."));
    }
235 236 237
    if (compute_bias_ && d_bias) {
      // reduce: {0, 1, 2, 3, 4} -> {2, 3, 4} or {0, 1, 2} -> {2} or {0,1,2,3}
      // -> {3} or {0,1,2,3,4} -> {3,4}
L
Li Min 已提交
238 239 240 241 242 243 244 245 246 247
      const auto input_dims = d_output->dims();
      const auto output_dims = d_bias->dims();
      bool support_case_1 =
          (input_dims.size() == 5 && output_dims.size() == 3 &&
           (input_dims[2] == output_dims[0]) &&
           (input_dims[3] == output_dims[1]) &&
           (input_dims[4] == output_dims[2]));
      bool support_case_2 =
          (input_dims.size() == 3 && output_dims.size() == 1 &&
           (input_dims[2] == output_dims[0]));
248 249 250 251 252 253 254 255
      bool support_case_3 =
          (input_dims.size() == 4 && output_dims.size() == 1 &&
           input_dims[3] == output_dims[0]);
      bool support_case_4 =
          (input_dims.size() == 5 && output_dims.size() == 2 &&
           input_dims[3] == output_dims[0] && input_dims[4] == output_dims[1]);

      gpuStream_t stream = dev_ctx_.stream();
L
Li Min 已提交
256
      if (support_case_1 || support_case_2) {
257
        TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
258 259 260 261 262
            dev_ctx_,
            *d_output,
            d_bias,
            kps::IdentityFunctor<T>(),
            {0, 1},
W
Wilber 已提交
263
            stream);
264 265
      } else if (support_case_3 || support_case_4) {
        TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
266 267 268 269 270
            dev_ctx_,
            *d_output,
            d_bias,
            kps::IdentityFunctor<T>(),
            {0, 1, 2},
271
            stream);
L
Li Min 已提交
272 273 274 275 276 277
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Only support reduce when the input dims are [0,1,2,3,4] and "
            "output is [2,3,4]"
            "or input is [0,1,2] and output is [2]."));
      }
278 279 280 281
    }
  }

 private:
L
Leo Chen 已提交
282
  const phi::GPUContext& dev_ctx_;
283 284 285 286 287 288 289 290 291 292 293 294 295

  bool transA_;
  bool transB_;

  int bsz_seq_;
  int output_size_;
  int input_size_;

  int compute_bias_;
};

}  // namespace operators
}  // namespace paddle