test_fmin_op.py 9.1 KB
Newer Older
L
LJQ❤️ 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from op_test import OpTest

paddle.enable_static()


class ApiFMinTest(unittest.TestCase):
    """ApiFMinTest"""

    def setUp(self):
        """setUp"""
        if core.is_compiled_with_cuda():
            self.place = core.CUDAPlace(0)
        else:
            self.place = core.CPUPlace()

        self.input_x = np.random.rand(10, 15).astype("float32")
        self.input_y = np.random.rand(10, 15).astype("float32")
        self.input_z = np.random.rand(15).astype("float32")
        self.input_a = np.array([0, np.nan, np.nan]).astype('int64')
        self.input_b = np.array([2, np.inf, -np.inf]).astype('int64')
        self.input_c = np.array([4, 1, 3]).astype('int64')

        self.np_expected1 = np.fmin(self.input_x, self.input_y)
        self.np_expected2 = np.fmin(self.input_x, self.input_z)
        self.np_expected3 = np.fmin(self.input_a, self.input_c)
        self.np_expected4 = np.fmin(self.input_b, self.input_c)

    def test_static_api(self):
        """test_static_api"""
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
            data_y = paddle.static.data("y", shape=[10, 15], dtype="float32")
            result_fmin = paddle.fmin(data_x, data_y)
            exe = paddle.static.Executor(self.place)
57 58 59 60
            res, = exe.run(feed={
                "x": self.input_x,
                "y": self.input_y
            },
L
LJQ❤️ 已提交
61
                           fetch_list=[result_fmin])
62
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
L
LJQ❤️ 已提交
63 64 65 66 67 68 69

        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
            data_z = paddle.static.data("z", shape=[15], dtype="float32")
            result_fmin = paddle.fmin(data_x, data_z)
            exe = paddle.static.Executor(self.place)
70 71 72 73
            res, = exe.run(feed={
                "x": self.input_x,
                "z": self.input_z
            },
L
LJQ❤️ 已提交
74
                           fetch_list=[result_fmin])
75
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
L
LJQ❤️ 已提交
76 77 78 79 80 81 82

        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data_a = paddle.static.data("a", shape=[3], dtype="int64")
            data_c = paddle.static.data("c", shape=[3], dtype="int64")
            result_fmin = paddle.fmin(data_a, data_c)
            exe = paddle.static.Executor(self.place)
83 84 85 86
            res, = exe.run(feed={
                "a": self.input_a,
                "c": self.input_c
            },
L
LJQ❤️ 已提交
87
                           fetch_list=[result_fmin])
88
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
L
LJQ❤️ 已提交
89 90 91 92 93 94 95

        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data_b = paddle.static.data("b", shape=[3], dtype="int64")
            data_c = paddle.static.data("c", shape=[3], dtype="int64")
            result_fmin = paddle.fmin(data_b, data_c)
            exe = paddle.static.Executor(self.place)
96 97 98 99
            res, = exe.run(feed={
                "b": self.input_b,
                "c": self.input_c
            },
L
LJQ❤️ 已提交
100
                           fetch_list=[result_fmin])
101
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
L
LJQ❤️ 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def test_dynamic_api(self):
        """test_dynamic_api"""
        paddle.disable_static()
        x = paddle.to_tensor(self.input_x)
        y = paddle.to_tensor(self.input_y)
        z = paddle.to_tensor(self.input_z)

        a = paddle.to_tensor(self.input_a)
        b = paddle.to_tensor(self.input_b)
        c = paddle.to_tensor(self.input_c)

        res = paddle.fmin(x, y)
        res = res.numpy()
116
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
L
LJQ❤️ 已提交
117 118 119 120

        # test broadcast
        res = paddle.fmin(x, z)
        res = res.numpy()
121
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
L
LJQ❤️ 已提交
122 123 124

        res = paddle.fmin(a, c)
        res = res.numpy()
125
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
L
LJQ❤️ 已提交
126 127 128

        res = paddle.fmin(b, c)
        res = res.numpy()
129
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
L
LJQ❤️ 已提交
130 131 132 133 134 135 136 137


class TestElementwiseFminOp(OpTest):
    """TestElementwiseFminOp"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
138
        self.python_api = paddle.fmin
L
LJQ❤️ 已提交
139 140 141 142 143 144 145 146 147 148 149
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
150
        self.check_output(check_eager=True)
L
LJQ❤️ 已提交
151 152 153

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
154
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
L
LJQ❤️ 已提交
155 156 157

    def test_check_grad_ingore_x(self):
        """test_check_grad_ingore_x"""
158 159 160 161 162
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set("X"),
                        check_eager=True)
L
LJQ❤️ 已提交
163 164 165

    def test_check_grad_ingore_y(self):
        """test_check_grad_ingore_y"""
166 167 168 169 170
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set('Y'),
                        check_eager=True)
L
LJQ❤️ 已提交
171 172 173 174 175 176 177 178


class TestElementwiseFmin2Op(OpTest):
    """TestElementwiseFmin2Op"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
179
        self.python_api = paddle.fmin
L
LJQ❤️ 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")

        y[2, 10:] = np.nan
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
193
        self.check_output(check_eager=True)
L
LJQ❤️ 已提交
194 195 196

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
197
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
L
LJQ❤️ 已提交
198 199 200

    def test_check_grad_ingore_x(self):
        """test_check_grad_ingore_x"""
201 202 203 204 205
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set("X"),
                        check_eager=True)
L
LJQ❤️ 已提交
206 207 208

    def test_check_grad_ingore_y(self):
        """test_check_grad_ingore_y"""
209 210 211 212 213
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set('Y'),
                        check_eager=True)
H
hong 已提交
214 215


216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
class TestElementwiseFmin3Op(OpTest):
    """TestElementwiseFmin2Op"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
        self.python_api = paddle.fmin
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(1, 1, [13, 17]).astype("float16")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float16")
        y = x + sgn * np.random.uniform(1, 1, [13, 17]).astype("float16")

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
        self.check_output(check_eager=True)

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)


H
hong 已提交
242 243 244
if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()