graph_test.cc 4.0 KB
Newer Older
X
Xin Pan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
X
Xin Pan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/graph.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"

namespace paddle {
namespace framework {

class NOP : public OperatorBase {
 public:
  NOP(const std::string &type, const VariableNameMap &inputs,
      const VariableNameMap &outputs, const AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const Scope &scope,
               const platform::Place &place) const override {}
};

class SumOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
    AddOutput("Out", "");
    AddComment("");
  }
};

class SumOpVarTypeInference : public VarTypeInference {
 public:
  void operator()(const OpDesc &op_desc, BlockDesc *block) const override {
    auto &inputs = op_desc.Input("X");
    auto default_var_type = proto::VarType::SELECTED_ROWS;

    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string &name) {
          return block->Var(name)->GetType() == proto::VarType::LOD_TENSOR;
        });
    if (any_input_is_lod_tensor) {
      default_var_type = proto::VarType::LOD_TENSOR;
    }

    auto out_var_name = op_desc.Output("Out").front();
    block->Var(out_var_name)->SetType(default_var_type);
  }
};
}  // namespace framework
}  // namespace paddle

REGISTER_OPERATOR(sum, paddle::framework::NOP, paddle::framework::SumOpMaker,
                  paddle::framework::SumOpVarTypeInference);
REGISTER_OPERATOR(sum_without_infer_var_type, paddle::framework::NOP,
                  paddle::framework::SumOpMaker);

namespace paddle {
namespace framework {

TEST(GraphTest, Basic) {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"test_a", "test_b", "test_c"});
  op->SetOutput("Out", {"test_out"});
X
Xin Pan 已提交
79
  op->SetAttr("op_role", 1);
X
Xin Pan 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

  prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_out");

  op->InferVarType(prog.MutableBlock(0));

  ASSERT_EQ(proto::VarType::SELECTED_ROWS,
            prog.MutableBlock(0)->Var("test_out")->GetType());

  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::LOD_TENSOR);
  op->InferVarType(prog.MutableBlock(0));
  ASSERT_EQ(proto::VarType::LOD_TENSOR,
            prog.MutableBlock(0)->Var("test_out")->GetType());

X
Xin Pan 已提交
96
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
X
Xin Pan 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  ASSERT_EQ(g->nodes[0]->Name(), "sum");
  ASSERT_EQ(g->nodes[0]->inputs[0]->Name(), "test_a");
  ASSERT_EQ(g->nodes[0]->inputs[1]->Name(), "test_b");
  ASSERT_EQ(g->nodes[0]->inputs[2]->Name(), "test_c");
  ASSERT_EQ(g->nodes[0]->outputs[0]->Name(), "test_out");
  ASSERT_EQ(g->nodes[1]->Name(), "test_a");
  ASSERT_EQ(g->nodes[1]->outputs[0]->Name(), "sum");
  ASSERT_EQ(g->nodes[2]->Name(), "test_b");
  ASSERT_EQ(g->nodes[2]->outputs[0]->Name(), "sum");
  ASSERT_EQ(g->nodes[3]->Name(), "test_c");
  ASSERT_EQ(g->nodes[3]->outputs[0]->Name(), "sum");
  ASSERT_EQ(g->nodes[4]->Name(), "test_out");
  ASSERT_EQ(g->nodes[4]->inputs[0]->Name(), "sum");
  ASSERT_EQ(g->nodes.size(), 5);
}
}  // namespace framework
}  // namespace paddle