test_composite_batch_norm.py 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
from utils import SUB_TOLERANCE

import paddle
import paddle.nn.functional as F
22
from paddle import nn
J
Jiabin Yang 已提交
23
from paddle.fluid import core, framework
24
from paddle.incubate.autograd import primapi
J
Jiabin Yang 已提交
25 26
from paddle.nn import BatchNorm
from paddle.tensor import ones  # noqa: F401
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

np.random.seed(2023)


def generate_data(shape, dtype="float32"):
    np_data = np.random.random(shape).astype(dtype)
    return np_data


class Attr:
    def __init__(self) -> None:
        self.dtype = "float32"
        self.shape = [4, 6, 12, 24]
        self.training = True
        self.momentum = 0.9
        self.epsilon = 1e-05
        self.data_format = "NCHW"
        self.use_global_stats = None

    def set_dtype(self, dtype) -> None:
        self.dtype = dtype
        return

    def set_shape(self, shape) -> None:
        self.shape = shape
        return

    def set_training(self, training) -> None:
        self.training = training
        return

    def set_momentum(self, momentum) -> None:
        self.momentum = momentum
        return

    def set_epsilon(self, epsilon) -> None:
        self.epsilon = epsilon
        return

    def set_data_format(self, data_format) -> None:
        self.data_format = data_format
        return

    def set_use_global_stats(self, use_global_stats) -> None:
        self.use_global_stats = use_global_stats
        return

    def get_rtol(self, flag):
        rtol = SUB_TOLERANCE[self.dtype][flag].get("rtol")
        return rtol

    def get_atol(self, flag):
        atol = SUB_TOLERANCE[self.dtype][flag].get("atol")
        return atol


attrs = Attr()


def fn(
    x,
    running_mean,
    running_variance,
    weight,
    bias,
    training,
    momentum,
    epsilon,
    data_format,
    use_global_stats,
):
    z = F.batch_norm(
        x,
        running_mean,
        running_variance,
        weight,
        bias,
        training=training,
        momentum=momentum,
        epsilon=epsilon,
        data_format=data_format,
        use_global_stats=use_global_stats,
    )
    return z


def expect_forward(
    inputs,
    running_mean,
    running_variance,
    weight,
    bias,
    training,
    momentum,
    epsilon,
    data_format,
    use_global_stats,
):
    return fn(
        inputs,
        running_mean,
        running_variance,
        weight,
        bias,
        training,
        momentum,
        epsilon,
        data_format,
        use_global_stats,
    )


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def cal_static(inputs, running_mean, running_variance, weight, bias, mode=None):
    paddle.enable_static()
    core._set_prim_all_enabled(True)
    startup_program = paddle.static.Program()
    main_program = paddle.static.Program()
    with paddle.static.program_guard(main_program, startup_program):
        x1 = paddle.static.data(
            'x1', shape=inputs.shape, dtype=str(inputs.dtype)
        )
        x2 = paddle.static.data(
            'x2', shape=running_mean.shape, dtype=str(running_mean.dtype)
        )
        x3 = paddle.static.data(
            'x3',
            shape=running_variance.shape,
            dtype=str(running_variance.dtype),
        )
        x4 = paddle.static.data(
            'x4', shape=weight.shape, dtype=str(weight.dtype)
        )
        x5 = paddle.static.data('x5', shape=bias.shape, dtype=str(bias.dtype))
160 161 162 163 164 165 166 167 168
        if attrs.use_global_stats is None:
            attrs.use_global_stats = not attrs.training
            trainable_statistics = False
        else:
            trainable_statistics = not attrs.use_global_stats

        use_run_stat = (
            (not attrs.training) and (not trainable_statistics)
        ) or attrs.use_global_stats
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        y = fn(
            x1,
            x2,
            x3,
            x4,
            x5,
            attrs.training,
            attrs.momentum,
            attrs.epsilon,
            attrs.data_format,
            attrs.use_global_stats,
        )
        blocks = main_program.blocks

        names = dict(
            zip(
                blocks[0].ops[0].output_names, blocks[0].ops[0].output_arg_names
            )
        )
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

        if not use_run_stat:
            vars_list = [
                names[key]
                for key in [
                    "Y",
                    "MeanOut",
                    "VarianceOut",
                    "SavedMean",
                    "SavedVariance",
                ]
            ]
        else:
            vars_list = [
                names[key]
                for key in [
                    "Y",
                    "MeanOut",
                    "VarianceOut",
                ]
208 209 210 211 212 213 214 215 216 217
            ]

        fwd_ops = [op.type for op in blocks[0].ops]
        # Ensure that batch_norm in original block
        assert 'batch_norm' in fwd_ops

        if mode:
            primapi.to_prim(blocks)
            fwd_ops_new = [op.type for op in blocks[0].ops]
            # Ensure that batch_norm is splitted into small ops
218 219 220 221
            assert (
                'batch_norm' not in fwd_ops_new
                and 'reduce_mean' not in fwd_ops_new
            )
222 223 224 225 226

    exe = paddle.static.Executor()
    exe.run(startup_program)

    # indeed SavedVariance is 1/sqrt(batch_var+eps)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    if not use_run_stat:
        Y, MeanOut, VarianceOut, SavedMean, SavedVariance = exe.run(
            main_program,
            feed={
                'x1': inputs,
                'x2': running_mean,
                'x3': running_variance,
                'x4': weight,
                'x5': bias,
            },
            fetch_list=vars_list,
        )
    else:
        Y, MeanOut, VarianceOut = exe.run(
            main_program,
            feed={
                'x1': inputs,
                'x2': running_mean,
                'x3': running_variance,
                'x4': weight,
                'x5': bias,
            },
            fetch_list=vars_list,
        )
251 252
    paddle.disable_static()
    core._set_prim_all_enabled(False)
253 254 255 256
    if not use_run_stat:
        return Y, MeanOut, VarianceOut, SavedMean, SavedVariance
    else:
        return Y, MeanOut, VarianceOut
257 258


259 260 261 262
class TestCompositeBatchNorm(unittest.TestCase):
    def setUp(self):
        self.dtypes = ["float32", "float64"]
        self.training = [False, True]
263
        self.shapes = [[8, 8, 16, 16], [2, 3, 4, 4]]
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        self.momentum = [0.1, 0.9]
        self.data_formats = ["NCHW", "NHWC"]
        self.use_global_stats = [None, True, False]

    def compare_forward(self):
        np_data = generate_data(attrs.shape, attrs.dtype)
        tensor_data = paddle.to_tensor(np_data)
        if attrs.data_format == 'NCHW':
            C = np_data.shape[1]
        elif attrs.data_format == 'NHWC':
            C = np_data.shape[-1]
        else:
            raise TypeError
        running_mean = paddle.zeros(C, dtype=attrs.dtype)
        running_variance = paddle.ones(C, dtype=attrs.dtype)
        weight = paddle.ones(C, dtype=attrs.dtype) * 2
        bias = paddle.ones(C, dtype=attrs.dtype)

        expect = expect_forward(
            tensor_data,
            running_mean,
            running_variance,
            weight,
            bias,
            attrs.training,
            attrs.momentum,
            attrs.epsilon,
            attrs.data_format,
            attrs.use_global_stats,
        ).numpy()
        np_running_mean = np.zeros(C, dtype=attrs.dtype)
        np_running_variance = np.ones(C, dtype=attrs.dtype)
        np_weight = np.ones(C, dtype=attrs.dtype) * 2
        np_bias = np.ones(C, dtype=attrs.dtype)
298
        res_origin = cal_static(
299
            np_data, np_running_mean, np_running_variance, np_weight, np_bias
300 301 302 303 304 305 306 307 308 309 310 311
        )
        res_prim = cal_static(
            np_data,
            np_running_mean,
            np_running_variance,
            np_weight,
            np_bias,
            mode="prim",
        )

        # prim out vs dygraph mode out
        assert expect.dtype == res_prim[0].dtype
312 313
        np.testing.assert_allclose(
            expect,
314
            res_prim[0],
315 316 317 318
            rtol=attrs.get_rtol("forward"),
            atol=attrs.get_atol("forward"),
        )

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        # prim all outs vs origin static all outs
        use_global_stats = attrs.use_global_stats
        if use_global_stats is None:
            use_global_stats = not attrs.training
            trainable_statistics = False
        else:
            trainable_statistics = not use_global_stats
        test_mode = (not attrs.training) and (not trainable_statistics)

        global_stats = test_mode or use_global_stats
        vars_name = [
            "Y",
            "MeanOut",
            "VarianceOut",
            "SavedMean",
            "SavedVariance",
        ]

        assert len(res_origin) == len(res_prim)
        for idx in range(len(res_origin)):
            if global_stats and idx >= 3:
                # In this case saved_mean and saved_var are not expected.
                continue
            origin_item = res_origin[idx]
            prim_item = res_prim[idx]

            assert origin_item.dtype == prim_item.dtype
            rtol = attrs.get_rtol("forward")
            atol = attrs.get_atol("forward")
            if attrs.dtype == "float64" and idx in (1, 2, 3):
                atol = 1e-7
                rtol = 1e-7
            if not isinstance(
                framework._current_expected_place(), core.CPUPlace
            ) and idx in (2, 3):
                atol = 5e-3
                rtol = 5e-3
            np.testing.assert_allclose(
                origin_item,
                prim_item,
                rtol=atol,
                atol=rtol,
                err_msg=f"Check diff failed of output: {vars_name[idx]}",
            )

364 365 366
    def test_forward(self):
        for i in self.training:
            for j in self.dtypes:
367
                for k in self.use_global_stats:
368 369
                    attrs.set_training(i)
                    attrs.set_dtype(j)
370
                    attrs.set_use_global_stats(k)
371 372 373
                    self.compare_forward()

        for n in self.shapes:
374 375 376
            for m in self.momentum:
                for s in self.data_formats:
                    attrs.set_momentum(m)
377 378 379
                    attrs.set_shape(n)
                    attrs.set_data_format(s)
                    self.compare_forward()
380 381


J
Jiabin Yang 已提交
382 383 384 385 386 387 388
def apply_to_static(net, use_cinn):
    build_strategy = paddle.static.BuildStrategy()
    build_strategy.build_cinn_pass = use_cinn
    return paddle.jit.to_static(net, build_strategy=False)


class PrimeNet(paddle.nn.Layer):
389
    def __init__(self, data_layout='NCHW'):
390
        super().__init__()
391 392
        self.conv = nn.Conv2D(2, 4, (3, 3), bias_attr=False)
        self.bn = BatchNorm(4, act="relu", data_layout=data_layout)
J
Jiabin Yang 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

    def forward(self, x):
        y = self.conv(x)
        out = self.bn(y)
        res = F.max_pool2d(out, kernel_size=2, stride=2, padding=0)
        return res


class TestPrimForwardAndBackward(unittest.TestCase):
    """
    Test PrimeNet with @to_static + prim forward + prim backward + cinn v.s Dygraph
    """

    def setUp(self):
        paddle.seed(2022)
408
        self.x = paddle.randn([4, 2, 6, 6], dtype="float32")
J
Jiabin Yang 已提交
409 410
        self.x.stop_gradient = False

411
    def train(self, use_prim, data_layout="NCHW"):
J
Jiabin Yang 已提交
412 413
        core._set_prim_all_enabled(use_prim)
        paddle.seed(2022)
414
        net = PrimeNet(data_layout)
J
Jiabin Yang 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        sgd = paddle.optimizer.SGD(
            learning_rate=0.1, parameters=net.parameters()
        )

        net = paddle.amp.decorate(models=net, level='O2')

        net = apply_to_static(net, False)
        with paddle.amp.auto_cast(level='O2'):
            out = net(self.x)
            loss = paddle.mean(out)
            loss.backward()
            sgd.step()
            sgd.clear_grad()
            return loss

430
    def test_amp_nchw(self):
J
Jiabin Yang 已提交
431 432 433 434 435 436 437 438 439 440
        if not isinstance(framework._current_expected_place(), core.CPUPlace):
            expected = self.train(False)
            actual = self.train(True)
            np.testing.assert_allclose(
                expected,
                actual,
                rtol=1e-3,
                atol=1e-3,
            )

441 442 443 444 445 446 447 448 449 450 451
    def test_amp_nhwc(self):
        if not isinstance(framework._current_expected_place(), core.CPUPlace):
            expected = self.train(use_prim=False, data_layout="NHWC")
            actual = self.train(use_prim=True, data_layout="NHWC")
            np.testing.assert_allclose(
                expected,
                actual,
                rtol=1e-3,
                atol=1e-3,
            )

J
Jiabin Yang 已提交
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
class TestPrimEvalBranch(unittest.TestCase):
    """
    Test eval branch or composite rule of batch_norm.
    """

    def setUp(self):
        paddle.seed(2022)
        self.x = paddle.randn([4, 2, 6, 6], dtype="float32")
        self.x.stop_gradient = False

    def train(self, use_prim):
        core._set_prim_all_enabled(use_prim)
        paddle.seed(2022)
        net = BatchNorm(2, is_test=True)
        net = apply_to_static(net, False)
        out = net(self.x)
        loss = paddle.mean(out)
        return loss

    def test_eval_branch(self):
        expected = self.train(False)
        actual = self.train(True)
        np.testing.assert_allclose(
            expected,
            actual,
            rtol=1e-6,
            atol=1e-6,
        )


483 484
if __name__ == '__main__':
    unittest.main()