slice_op.h 16.1 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
17
#include <utility>
W
whs 已提交
18 19
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/operators/math/math_function.h"
W
whs 已提交
21 22 23

namespace paddle {
namespace operators {
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
using Tensor = framework::Tensor;

inline std::vector<int> get_new_data_from_tensorlist(
    const std::vector<const Tensor*>& list_new_data_tensor) {
  // get tensor from
  std::vector<int> vec_new_data;
  for (size_t i = 0; i < list_new_data_tensor.size(); ++i) {
    auto tensor = list_new_data_tensor[i];
    PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}),
                      "shape of dim tensor should be [1]");
    if (platform::is_gpu_place(tensor->place())) {
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);
      vec_new_data.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_data.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }
  return vec_new_data;
}
inline std::vector<int> get_new_data_from_tensor(
    const Tensor* new_data_tensor) {
  std::vector<int> vec_new_data;
  auto* new_data = new_data_tensor->data<int>();
  framework::Tensor cpu_starts_tensor;
  if (platform::is_gpu_place(new_data_tensor->place())) {
    TensorCopySync(*new_data_tensor, platform::CPUPlace(), &cpu_starts_tensor);
    new_data = cpu_starts_tensor.data<int>();
  }
  vec_new_data =
      std::vector<int>(new_data, new_data + new_data_tensor->numel());
  return vec_new_data;
}
W
whs 已提交
57 58 59 60 61

template <typename DeviceContext, typename T>
class SliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
62 63 64 65 66 67
    const framework::Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
    int rank = is_tensor_array
                   ? 1
                   : ctx.Input<framework::Tensor>("Input")->dims().size();

W
whs 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
95 96 97 98
    const framework::Variable* input_var = context.InputVar("Input");
    framework::Variable* out_var = context.OutputVar("Out");
    bool input_is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
    bool out_is_tensor_array = out_var->IsType<framework::LoDTensorArray>();
H
Hongyu Liu 已提交
99

100 101
    auto axes = context.Attr<std::vector<int>>("axes");
    auto starts = context.Attr<std::vector<int>>("starts");
102

103
    auto ends = context.Attr<std::vector<int>>("ends");
H
Hongyu Liu 已提交
104
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");

    bool need_infer = false;
    if (context.HasInput("StartsTensor") || context.HasInput("EndsTensor")) {
      need_infer = true;
    }
    if (list_new_starts_tensor.size() > 0 || list_new_ends_tensor.size() > 0) {
      need_infer = true;
    }
    if (need_infer) {
      if (context.HasInput("StartsTensor")) {
        auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
        starts = get_new_data_from_tensor(starts_tensor);
      } else if (list_new_starts_tensor.size() > 0) {
        starts = get_new_data_from_tensorlist(list_new_starts_tensor);
      }
      if (context.HasInput("EndsTensor")) {
        auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
        ends = get_new_data_from_tensor(ends_tensor);
      } else if (list_new_ends_tensor.size() > 0) {
        ends = get_new_data_from_tensorlist(list_new_ends_tensor);
      }
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    }
    PADDLE_ENFORCE_EQ(
        starts.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of starts must be equal to the size of axes."));
    PADDLE_ENFORCE_EQ(
        ends.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of ends must be equal to the size of axes."));
    if (input_is_tensor_array) {
      auto in_array = context.Input<framework::LoDTensorArray>("Input");
      // If the input is LoDTensorArray, the rank of input is 1.
      int in_size = in_array->size();
      int start = starts[0] < 0 ? (starts[0] + in_size) : starts[0];
      int end = ends[0] < 0 ? (ends[0] + in_size) : ends[0];
      start = std::max(start, 0);
      end = std::max(end, 0);
      end = std::min(end, in_size);

      PADDLE_ENFORCE_GT(end, start,
                        platform::errors::InvalidArgument(
                            "Attr(ends) should be greater than attr(starts) in "
                            "slice op. But received ends = %d, starts = %d.",
                            end, start));
      int out_size = end - start;

      if (out_is_tensor_array) {
        auto out_array = context.Output<framework::LoDTensorArray>("Out");
        out_array->resize(out_size);

        for (int i = 0; i < out_size; ++i) {
          auto* out_tensor = &out_array->at(i);
          auto in_tensor = in_array->at(i + start);
          out_tensor->set_lod(in_tensor.lod());
          if (in_tensor.memory_size() > 0) {
            TensorCopy(in_tensor, context.GetPlace(), out_tensor);
          } else {
            VLOG(10)
                << "WARNING: The input tensor 'x_tensor' holds no memory, so "
                   "nothing has been written to output array["
                << i << "].";
          }
        }
      } else {
        auto out = context.Output<framework::Tensor>("Out");
        auto in_tensor = in_array->at(start);
        TensorCopy(in_tensor, context.GetPlace(), out);
      }

      return;
    }

    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");

    auto out_dims = out->dims();
    auto in_dims = in->dims();
    if (need_infer) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
      out_dims = in_dims;
      int dim_value, start, end;
      for (size_t i = 0; i < axes.size(); ++i) {
        dim_value = out_dims[axes[i]];
        if (dim_value > 0) {
          // when end = start+1 and start == -1
          if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
            auto ret =
                std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
            if (ret != decrease_axis.end()) {
              ends[i] = 10000000;
            }
          }

          start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
          end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
          start = std::max(start, 0);
          end = std::max(end, 0);
          end = std::min(end, dim_value);
          PADDLE_ENFORCE_GT(end, start, "end should greater than start");
          out_dims[axes[i]] = end - start;
        }
      }
      out->Resize(out_dims);
      // generate new shape
      if (decrease_axis.size() > 0) {
        std::vector<int> new_out_shape;
        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
                            "decrease dim should be 1");
          out_dims[decrease_axis[i]] = 0;
        }

        for (int i = 0; i < out_dims.size(); ++i) {
          if (out_dims[i] != 0) {
            new_out_shape.push_back(out_dims[i]);
          }
        }
        if (new_out_shape.size() == 0) {
          new_out_shape.push_back(1);
        }

        out_dims = framework::make_ddim(new_out_shape);
      }
    }

    // resize out_dims
H
Hongyu Liu 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    if (decrease_axis.size() > 0) {
      if (decrease_axis.size() == (size_t)in_dims.size()) {
        std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
        out->Resize(framework::make_ddim(vec_origin_out_shape));
      } else {
        std::vector<int> vec_origin_out_shape(
            out_dims.size() + decrease_axis.size(), -1);

        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          vec_origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
          if (vec_origin_out_shape[i] == -1) {
            vec_origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }

        out->Resize(framework::make_ddim(vec_origin_out_shape));
      }
    }

    out->mutable_data<T>(context.GetPlace());
W
whs 已提交
261

H
Hongyu Liu 已提交
262
    auto new_out_dims = out->dims();
W
whs 已提交
263 264 265 266
    auto offsets = Eigen::array<int, D>();
    auto extents = Eigen::array<int, D>();
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
H
Hongyu Liu 已提交
267
      extents[i] = new_out_dims[i];
W
whs 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    }
    int start;
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i];
      if (start < 0) {
        start = (start + in_dims[axes[i]]);
      }
      start = std::max(start, 0);
      offsets[axes[i]] = start;
    }
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
H
Hongyu Liu 已提交
283
            *out, new_out_dims);
W
whs 已提交
284
    out_t.device(place) = in_t.slice(offsets, extents);
H
Hongyu Liu 已提交
285 286

    out->Resize(out_dims);
W
whs 已提交
287 288
  }
};
289 290 291 292 293

template <typename DeviceContext, typename T>
class SliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
294 295 296 297 298 299
    const framework::Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
    size_t rank = is_tensor_array
                      ? 1
                      : ctx.Input<framework::Tensor>("Input")->dims().size();

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto axes = context.Attr<std::vector<int>>("axes");
    auto starts = context.Attr<std::vector<int>>("starts");
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    auto ends = context.Attr<std::vector<int>>("ends");
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");

    if (list_new_starts_tensor.size() > 0) {
      starts = get_new_data_from_tensorlist(list_new_starts_tensor);
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
      starts = get_new_data_from_tensor(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = get_new_data_from_tensorlist(list_new_ends_tensor);
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
      ends = get_new_data_from_tensor(ends_tensor);
    }
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    framework::Variable* d_input_var =
        context.OutputVar(framework::GradVarName("Input"));
    const framework::Variable* d_out_var =
        context.InputVar(framework::GradVarName("Out"));
    bool d_input_is_tensor_array =
        d_input_var->IsType<framework::LoDTensorArray>();
    bool d_out_is_tensor_array = d_out_var->IsType<framework::LoDTensorArray>();

    if (d_input_is_tensor_array) {
      auto* input_array = context.Input<framework::LoDTensorArray>("Input");
      auto* d_input_array = context.Output<framework::LoDTensorArray>(
          framework::GradVarName("Input"));

      int d_in_size = input_array->size();
      d_input_array->resize(d_in_size);
      // If the input is LoDTensorArray, the rank of input is 1.
      // So only use the 0th element of starts.
      int start = starts[0] < 0 ? (starts[0] + d_in_size) : starts[0];
      start = std::max(start, 0);
      // set zero
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto& dev_ctx = *pool.Get(context.GetPlace());
      T value = 0.0;
      math::SetConstant<DeviceContext, T> functor;
      for (int i = 0; i < d_in_size; ++i) {
        auto dim = input_array->at(i).dims();
        d_input_array->at(i).Resize(dim);
        d_input_array->at(i).mutable_data<T>(context.GetPlace());
        functor(reinterpret_cast<const DeviceContext&>(dev_ctx),
                &d_input_array->at(i), static_cast<T>(value));
      }

      if (d_out_is_tensor_array) {
        auto* d_out_array = context.Input<framework::LoDTensorArray>(
            framework::GradVarName("Out"));
        int d_out_size = d_out_array->size();
        for (int i = 0; i < d_out_size; ++i) {
          TensorCopy(d_out_array->at(i), context.GetPlace(),
                     &(d_input_array->at(start + i)));
        }

      } else {
        auto* d_out =
            context.Input<framework::Tensor>(framework::GradVarName("Out"));
        TensorCopy(*d_out, context.GetPlace(), &(d_input_array->at(start)));
      }
      return;
    }

    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));

    auto* d_input =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));

    d_input->mutable_data<T>(context.GetPlace());

    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
408

H
Hongyu Liu 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
    if (decrease_axis.size() > 0) {
      if (decrease_axis.size() == (size_t)in_dims.size()) {
        // all dims decrease
        std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
        out_dims = framework::make_ddim(vec_origin_out_shape);
      } else {
        std::vector<int> vec_origin_out_shape(
            out_dims.size() + decrease_axis.size(), -1);

        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          vec_origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
          if (vec_origin_out_shape[i] == -1) {
            vec_origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }

        out_dims = framework::make_ddim(vec_origin_out_shape);
      }
    }

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    auto offsets = Eigen::array<int, D>();
    auto extents = Eigen::array<int, D>();
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
    int start;
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i];
      if (start < 0) {
        start = (start + in_dims[axes[i]]);
      }
      start = std::max(start, 0);
      offsets[axes[i]] = start;
    }
    Eigen::array<std::pair<int, int>, D> paddings;
    for (size_t i = 0; i < paddings.size(); ++i) {
      paddings[i].first = offsets[i];
      paddings[i].second = (in_dims[i] - out_dims[i]) - offsets[i];
    }
    auto d_in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_input);
    auto d_out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
H
Hongyu Liu 已提交
460
            *d_out, out_dims);
461 462 463
    d_in_t.device(place) = d_out_t.pad(paddings, 0);
  }
};
W
whs 已提交
464 465
}  // namespace operators
}  // namespace paddle