offload_helper.py 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ..common import is_optimizer_op, OP_ROLE_KEY, OpRole, is_update_op
16 17
from paddle.fluid import core, unique_name

18 19
__all__ = []

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

class OffloadHelper(object):
    cpu_place_type = 0
    cuda_place_type = 1
    cuda_pinned_place_type = 2

    def __init__(self):
        pass
        "0: dst is on CPUPlace. "
        "1: dst is on CUDAPlace. "
        "2: dst is on CUDAPinnedPlace. "

    def _insert_cast_op(self, block, idx, src_name, dst_name):
        src_var = block.var(src_name)
        if not block.has_var(dst_name):
            block.create_var(
                name=dst_name,
                shape=src_var.shape,
                dtype=core.VarDesc.VarType.FP16,
                persistable=True)
        dst_var = block.var(dst_name)
        assert dst_var.dtype == core.VarDesc.VarType.FP16
        block._insert_op_without_sync(
            idx,
            type='cast',
            inputs={'X': src_var},
            outputs={'Out': dst_var},
            attrs={
                'in_dtype': src_var.dtype,
                'out_dtype': dst_var.dtype,
                OP_ROLE_KEY: OpRole.Optimize
            })

    def _insert_memcpy_op(self, block, idx, src_name, dst_name, dst_place_type):
        src_var = block.var(src_name)
        dst_var = block.var(dst_name)
        block._insert_op_without_sync(
            idx,
            type='memcpy',
            inputs={'X': src_var},
            outputs={'Out': dst_var},
            attrs={
                'dst_place_type': dst_place_type,
                OP_ROLE_KEY: OpRole.Optimize,
            })

    def _insert_fetch_op(self, block, idx, src_name, dst_name):
        self._insert_memcpy_op(block, idx, src_name, dst_name,
                               OffloadHelper.cuda_place_type)

    def _insert_offload_op(self, block, idx, src_name, dst_name):
        self._insert_memcpy_op(block, idx, src_name, dst_name,
                               OffloadHelper.cuda_pinned_place_type)

    def _get_offload_var_name(self, name):
        return unique_name.generate(name + '@offload')

    def _create_offload_var(self, var_name, offload_var_name, blocks):
        for block in blocks:
            var = block.var(var_name)
            var.persistable = False
            offload_var = block.create_var(
                name=offload_var_name,
                shape=var.shape,
                dtype=var.dtype,
                persistable=True)

87
    def offload_fp32param(self, block, startup_block, offload=True):
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        """
        (p_fp16) = cast(p)
        (p_fp16_recompute) = cast(p)
        (pout,) = adam(p)
        ===========================>
        rename(p_fp16_recompute, p_fp16)

        (p,) = prefetch(p@offload)
        (pout,) = adam(p)
        (p_fp16) = cast(p)
        (p@offload) = memcpy(p)
        """
        param_to_idx = dict()
        param_to_fp16 = dict()
        # recompute_var which need rename to fp16_param
        fp16_param_to_recompute = dict()
        recompute_to_fp16 = dict()

        def remove_param(input_name):
            param_to_idx.pop(input_name)
            if input_name in param_to_fp16:
                fp16_param = param_to_fp16.pop(input_name)
                if fp16_param in fp16_param_to_recompute:
                    recompute = fp16_param_to_recompute.pop(fp16_param)
                    recompute_to_fp16.pop(recompute)

        # step1: record param
        for idx, op in reversed(list(enumerate(block.ops))):
116
            if is_update_op(op):
117 118 119
                param = op.desc.input("Param")[0]
                param_to_idx[param] = idx

120 121
        # step2: remove param which can't offload and
        #        record param->fp16param, fp16param->recompute_var
122 123 124 125 126 127 128
        for idx, op in enumerate(block.ops):
            if is_optimizer_op(op):
                break
            for input_name in op.desc.input_arg_names():
                if input_name not in param_to_idx:
                    continue

129
                # param which will be used by fp32 op
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                if op.type != 'cast':
                    remove_param(input_name)
                    continue

                # param is only used by cast op,
                # which to cast fp32_param to fp16_param
                output_name = op.output_arg_names[0]
                if 'cast_fp16' not in output_name:
                    remove_param(input_name)
                    continue

                if 'subprog' not in output_name:
                    assert output_name == input_name + '.cast_fp16'
                    assert input_name not in param_to_fp16, \
                        "There must be only one cast op from fp32 param to fp16 param."
                    param_to_fp16[input_name] = output_name
                else:
                    # fp16-->recompute_var
                    assert input_name in param_to_fp16, \
                        "param must first be cast to fp16"
                    fp16_param = param_to_fp16[input_name]
                    fp16_param_to_recompute[fp16_param] = output_name
                    recompute_to_fp16[output_name] = fp16_param

        param_name_to_offload_name = dict()
        # step3: main_block add offload, cast op
        # change recompute to fp16, remove cast(param) to fp16
        for idx, op in reversed(list(enumerate(block.ops))):
158
            if is_update_op(op):
159 160 161 162 163
                param = op.desc.input("Param")[0]
                if param not in param_to_idx: continue
                # step3.1: create offload_var
                offload_var_name = self._get_offload_var_name(param)
                param_name_to_offload_name[param] = offload_var_name
164 165 166
                if offload:
                    self._create_offload_var(param, offload_var_name,
                                             [block, startup_block])
167

168 169 170
                    # step3.2: insert cast op and offload op
                    self._insert_offload_op(block, idx + 1, param,
                                            offload_var_name)
171 172 173 174 175 176 177 178

                assert param in param_to_fp16
                fp16_param_name = param_to_fp16[param]
                fp16_param_var = block.var(fp16_param_name)
                fp16_param_var.persistable = True
                self._insert_cast_op(block, idx + 1, param,
                                     param_to_fp16[param])

179 180 181
                if offload:
                    # step3.3: insert fetch op
                    self._insert_fetch_op(block, idx, offload_var_name, param)
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
                continue

            # step3.4: remove cast op
            if op.type == 'cast':
                input_name = op.desc.input_arg_names()[0]
                if input_name in param_to_idx:
                    block._remove_op(idx, sync=False)
                    continue

            # step3.5: change recompute_param to fp16_param
            for input_name in op.desc.input_arg_names():
                if input_name in recompute_to_fp16:
                    op._rename_input(input_name, recompute_to_fp16[input_name])
            for output_name in op.desc.output_arg_names():
                if output_name in recompute_to_fp16:
                    op._rename_output(output_name,
                                      recompute_to_fp16[output_name])

        # step4: remove recompute_param
        for name in recompute_to_fp16.keys():
            block._remove_var(name, sync=False)

        # step5: startup_block add offload
        visited_vars = set()
        for idx, op in reversed(list(enumerate(startup_block.ops))):
            for out_name in op.output_arg_names:
                if out_name in visited_vars:
                    continue

                if out_name in param_name_to_offload_name:
                    var_name = out_name
213 214 215 216
                    if offload:
                        offload_var_name = param_name_to_offload_name[var_name]
                        self._insert_offload_op(startup_block, idx + 1,
                                                var_name, offload_var_name)
217 218 219 220 221 222 223 224
                    self._insert_cast_op(startup_block, idx + 1, var_name,
                                         param_to_fp16[var_name])

                visited_vars.add(out_name)

        block._sync_with_cpp()
        startup_block._sync_with_cpp()

225 226 227 228 229 230 231 232 233 234 235 236 237
    def cast_fp32param_in_optimize(self, block, startup_block):
        """
        (p_fp16) = cast(p)
        (p_fp16_recompute) = cast(p)
        (pout,) = adam(p)
        ===========================>
        rename(p_fp16_recompute, p_fp16)

        (pout,) = adam(p)
        (p_fp16) = cast(p)
        """
        self.offload_fp32param(block, startup_block, offload=False)

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    def offload(self, block, startup_block):
        """
        (m1, m2) = prefetch(m1@offload, m2@offload)
        (m1out, m2out, pout) = adam(m1, m2, p)
        (m1@offload, m2@offload) = memcpy(m1, m2)
        """
        vars_name_to_offload_name = dict()

        # main_block add offload
        for idx, op in reversed(list(enumerate(block.ops))):
            if not is_optimizer_op(op):
                break

            vars_name = []
            if op.type == "adam":
                # {Moment1Out = [''], Moment2Out = [''], ParamOut = ['']} =
                # adam(inputs={Moment1 = [''], Moment2 = [''], Param = ['']})
                vars_name.append(op.desc.input("Moment1")[0])
                vars_name.append(op.desc.input("Moment2")[0])
            elif op.type == 'momentum':
                pass
            elif op.type == 'lars':
                pass
            elif op.type == 'lamb':
                pass

            # step1: create and init offload_var
            for var_name in vars_name:
                assert var_name not in vars_name_to_offload_name

                offload_var_name = self._get_offload_var_name(var_name)
                vars_name_to_offload_name[var_name] = offload_var_name

                self._create_offload_var(var_name, offload_var_name,
                                         [block, startup_block])

            # step2: insert offload op
            for var_name in vars_name:
                offload_var_name = vars_name_to_offload_name[var_name]
                self._insert_offload_op(block, idx + 1, var_name,
                                        offload_var_name)

            # step3: insert fetch op
            for var_name in vars_name:
                offload_var_name = vars_name_to_offload_name[var_name]
                self._insert_fetch_op(block, idx, offload_var_name, var_name)

        # startup_block add offload
        visited_vars = set()
        for idx, op in reversed(list(enumerate(startup_block.ops))):
            for out_name in op.output_arg_names:
                if out_name in visited_vars:
                    continue

                if out_name in vars_name_to_offload_name:
                    var_name = out_name
                    offload_var_name = vars_name_to_offload_name[var_name]
                    # insert offload op after var is generated
                    self._insert_offload_op(startup_block, idx + 1, var_name,
                                            offload_var_name)
                visited_vars.add(out_name)

        block._sync_with_cpp()
        startup_block._sync_with_cpp()