adamw_kernel.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/adamw_kernel.h"

#include <vector>

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
// for TensorToVector
#include "paddle/fluid/framework/tensor_util.h"

namespace phi {

template <typename T, typename Context>
void AdamwDenseKernel(const Context& dev_ctx,
                      const DenseTensor& param,
                      const DenseTensor& grad,
                      const DenseTensor& learning_rate,
                      const DenseTensor& moment1,
                      const DenseTensor& moment2,
                      const DenseTensor& beta1_pow,
                      const DenseTensor& beta2_pow,
                      const paddle::optional<DenseTensor>& master_param,
                      const paddle::optional<DenseTensor>& skip_update,
                      const Scalar& beta1,
                      const Scalar& beta2,
                      const Scalar& epsilon,
                      float lr_ratio,
                      float coeff,
                      bool with_decay,
                      bool lazy_mode,
                      int64_t min_row_size_to_use_multithread,
                      bool multi_precision,
                      bool use_global_beta_pow,
                      DenseTensor* param_out,
                      DenseTensor* moment1_out,
                      DenseTensor* moment2_out,
                      DenseTensor* beta1_pow_out,
                      DenseTensor* beta2_pow_out,
                      DenseTensor* master_param_outs) {
  bool skip_update_ = false;
  if (skip_update.is_initialized()) {
    PADDLE_ENFORCE_EQ(
        skip_update->numel(),
        1,
        errors::InvalidArgument("Input(SkipUpdate) size must be 1, but get %d",
                                skip_update->numel()));
    std::vector<bool> skip_update_vec;
    paddle::framework::TensorToVector(*skip_update, dev_ctx, &skip_update_vec);
    skip_update_ = skip_update_vec[0];
  }
  if (skip_update_) {
    VLOG(4) << "Adamw skip update";
    phi::Copy(dev_ctx, param, dev_ctx.GetPlace(), false, param_out);
    phi::Copy(dev_ctx, moment1, dev_ctx.GetPlace(), false, moment1_out);
    phi::Copy(dev_ctx, moment2, dev_ctx.GetPlace(), false, moment2_out);
    phi::Copy(dev_ctx, beta1_pow, beta1_pow.place(), false, beta1_pow_out);
    phi::Copy(dev_ctx, beta2_pow, beta2_pow.place(), false, beta2_pow_out);
    return;
  }

  auto beta1_ = beta1.to<float>();
  auto beta2_ = beta2.to<float>();
  auto epsilon_ = epsilon.to<float>();

  const float* beta1_pow_ptr = beta1_pow.template data<float>();
  const float* beta2_pow_ptr = beta2_pow.template data<float>();
  DenseTensor xpu_beta1_pow;
  DenseTensor xpu_beta2_pow;
  if (beta1_pow.place() == CPUPlace() && beta2_pow.place() == CPUPlace()) {
    phi::Copy(dev_ctx, beta1_pow, dev_ctx.GetPlace(), false, &xpu_beta1_pow);
    phi::Copy(dev_ctx, beta2_pow, dev_ctx.GetPlace(), false, &xpu_beta2_pow);
    dev_ctx.Wait();
    beta1_pow_ptr = xpu_beta1_pow.template data<float>();
    beta2_pow_ptr = xpu_beta2_pow.template data<float>();
  }
  if (with_decay) {
    int r = xpu::adamw(dev_ctx.x_context(),
                       grad.template data<T>(),
                       moment1.template data<float>(),
                       moment2.template data<float>(),
                       param.template data<T>(),
                       beta1_pow_ptr,
                       beta2_pow_ptr,
                       learning_rate.template data<float>(),
                       dev_ctx.template Alloc<float>(moment1_out),
                       dev_ctx.template Alloc<float>(moment2_out),
                       dev_ctx.template Alloc<T>(param_out),
                       beta1_,
                       beta2_,
                       epsilon_,
                       coeff,
                       param.numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "adamw");
  } else {
    int r = xpu::adam(dev_ctx.x_context(),
                      grad.template data<T>(),
                      moment1.template data<float>(),
                      moment2.template data<float>(),
                      param.template data<T>(),
                      beta1_pow_ptr,
                      beta2_pow_ptr,
                      learning_rate.template data<float>(),
                      dev_ctx.template Alloc<float>(moment1_out),
                      dev_ctx.template Alloc<float>(moment2_out),
                      dev_ctx.template Alloc<T>(param_out),
                      beta1_,
                      beta2_,
                      epsilon_,
                      param.numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "adamw");
  }

  if (!use_global_beta_pow) {
    // update in cpu and then copy to xpu
    if (beta1_pow.place() == CPUPlace() && beta2_pow.place() == CPUPlace()) {
      const float* beta1_pow_p = beta1_pow.template data<float>();
      dev_ctx.template HostAlloc<float>(beta1_pow_out)[0] =
          beta1_ * beta1_pow_p[0];
      const float* beta2_pow_p = beta2_pow.template data<float>();
      dev_ctx.template HostAlloc<float>(beta2_pow_out)[0] =
          beta2_ * beta2_pow_p[0];
      xpu_wait(dev_ctx.x_context()->xpu_stream);
    } else {
      float* beta1_pow_out_p = dev_ctx.template Alloc<float>(beta1_pow_out);
      float* beta2_pow_out_p = dev_ctx.template Alloc<float>(beta2_pow_out);
      int r = xpu::scale(dev_ctx.x_context(),
                         beta1_pow_ptr,
                         beta1_pow_out_p,
                         beta1_pow.numel(),
                         false,
                         beta1_,
                         0.0f);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "adamw");
      r = xpu::scale(dev_ctx.x_context(),
                     beta2_pow_ptr,
                     beta2_pow_out_p,
                     beta2_pow.numel(),
                     false,
                     beta2_,
                     0.0f);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "adamw");
    }
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(adamw, XPU, ALL_LAYOUT, phi::AdamwDenseKernel, float) {
  // Skip beta1_pow, beta2_pow, skip_update data transform
  kernel->InputAt(5).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(6).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(8).SetBackend(phi::Backend::ALL_BACKEND);
}