test_special_op_translator.py 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

import paddle
20
from paddle import ir
21
from paddle.fluid import core
22
from paddle.framework import LayerHelper
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

paddle.enable_static()


class TestCastOpTranscriber(unittest.TestCase):
    def test_op(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.to_tensor([2, 3, 4], 'float64')
                y = paddle.cast(x, 'uint8')

38
        _ = ir.translate_to_new_ir(main_program.desc)
39 40


41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
class TestElementwiseOpTranscriber(unittest.TestCase):
    def test_elementwise_without_y_grad(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        exe = paddle.static.Executor(place)

        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x_data = np.random.rand(100, 2, 3)
                y_data = np.random.rand(100)
                x = paddle.to_tensor(x_data, dtype='float32')
                x.stop_gradient = False
                y = paddle.to_tensor(y_data, dtype='float32')

                out1 = paddle.tensor.math._elementwise_op(
                    LayerHelper('elementwise_add', x=x, y=y, axis=0)
                )
                out1.stop_gradient = False
                mean = paddle.mean(out1)
                paddle.static.append_backward(mean)

                out = exe.run(main_program, {}, fetch_list=[out1.name])
                np.testing.assert_allclose(
                    out[0],
                    x_data + y_data.reshape(100, 1, 1),
                    rtol=1e-6,
                    atol=1e-6,
                )

    def test_elementwise_with_y_grad(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        exe = paddle.static.Executor(place)

        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x_data = np.random.rand(100, 2, 3)
                y_data = np.random.rand(100)
                x = paddle.to_tensor(x_data, dtype='float32')
                x.stop_gradient = False
                y = paddle.to_tensor(y_data, dtype='float32')
                y.stop_gradient = False

                out1 = paddle.tensor.math._elementwise_op(
                    LayerHelper('elementwise_add', x=x, y=y, axis=0)
                )
                out1.stop_gradient = False
                mean = paddle.mean(out1)
                paddle.static.append_backward(mean)

                out = exe.run(main_program, {}, fetch_list=[out1.name])
                np.testing.assert_allclose(
                    out[0],
                    x_data + y_data.reshape(100, 1, 1),
                    rtol=1e-6,
                    atol=1e-6,
                )


104 105 106 107 108 109 110 111 112 113 114 115 116 117
class TestEmbeddingOpTranscriber(unittest.TestCase):
    def test_op(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.static.data(name="x", shape=[2, 4], dtype=np.int64)
                embedding = paddle.nn.Embedding(
                    10, 3, weight_attr=paddle.nn.initializer.Constant(value=1.0)
                )
                output = embedding(x)

118
        _ = ir.translate_to_new_ir(main_program.desc)
119 120 121 122 123 124 125 126 127 128 129 130 131


class TestIncrementOpTranscriber(unittest.TestCase):
    def test_op(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                data = paddle.zeros(shape=[1], dtype='float32')
                counter = paddle.increment(data)

132
        _ = ir.translate_to_new_ir(main_program.desc)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148


class TestAssignValueOpTranscriber(unittest.TestCase):
    def test_op(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.to_tensor(
                    [[0.1, 0.2], [0.3, 0.4]],
                    place=paddle.CPUPlace(),
                    stop_gradient=False,
                )

149
        _ = ir.translate_to_new_ir(main_program.desc)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165


class TestRnnOpTranscriber(unittest.TestCase):
    def test_op(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.randn((4, 16))
                prev_h = paddle.randn((4, 32))

                cell = paddle.nn.SimpleRNNCell(16, 32)
                y, h = cell(x, prev_h)

166
        _ = ir.translate_to_new_ir(main_program.desc)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187


class TestEmptyVarTranslate(unittest.TestCase):
    def test_op(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x1 = paddle.rand(shape=[3, 3], dtype="float32")
                x1.stop_gradient = False
                weight = paddle.full(
                    shape=[3, 3], fill_value="0.5", dtype="float32"
                )
                y = paddle.nn.functional.linear(x1, weight)
                y.stop_gradient = True
                out1 = paddle.concat(x=[x1, y], axis=1)
                out2 = paddle.mean(out1)
                sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.1)
                sgd_optimizer.minimize(out2)
188
        _ = ir.translate_to_new_ir(main_program.desc)
189 190


191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
class TestOneHotOpTranscriber(unittest.TestCase):
    def test_mutable_attribute(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                depth = paddle.assign(np.array([10], dtype=np.int32))
                label = paddle.static.data(
                    name="label", shape=[-1, 1], dtype="int64"
                )
                one_hot_label = paddle.nn.functional.one_hot(
                    x=label, num_classes=depth
                )

207
        _ = ir.translate_to_new_ir(main_program.desc)
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

    def test_normal_attribute(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                depth = 10
                label = paddle.static.data(
                    name="label", shape=[-1, 1], dtype="int64"
                )
                one_hot_label = paddle.nn.functional.one_hot(
                    x=label, num_classes=depth
                )

224
        _ = ir.translate_to_new_ir(main_program.desc)
225 226


227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
class TestReduceOpTranscriber(unittest.TestCase):
    def test_reduce_all(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        exe = paddle.static.Executor(place)

        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                arr = np.ones([2, 2], dtype="float32")
                x = paddle.to_tensor(arr, dtype='int32')
                out1 = paddle.all(x)

                out = exe.run(main_program, {}, fetch_list=[out1.name])
                np.testing.assert_array_equal(out[0], np.all(arr))

    def test_with_axis(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        exe = paddle.static.Executor(place)

        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                arr = np.ones([2, 2], dtype="float32")
                x = paddle.to_tensor(arr, dtype='int32')
                out1 = paddle.all(x, axis=0)

                out = exe.run(main_program, {}, fetch_list=[out1.name])
                np.testing.assert_array_equal(out[0], np.all(arr, axis=0))


261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
class TestIndexPutOpTranscriber(unittest.TestCase):
    def test_op(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.randn([2, 3])
                indices = [paddle.randint(0, 2, [2]), paddle.randint(0, 1, [2])]
                value = paddle.randn([2])
                y = paddle.index_put(x, indices, value, False)

        _ = ir.translate_to_new_ir(main_program.desc)


277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
class TestGradAddOpTranscriber(unittest.TestCase):
    def test_op(self):
        place = core.Place()
        place.set_place(paddle.CPUPlace())
        new_scope = paddle.static.Scope()
        main_program = paddle.static.Program()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x_data = np.random.rand(100, 2, 3)
                y_data = np.random.rand(100, 1, 1)
                x = paddle.to_tensor(x_data, dtype='float32')
                x.stop_gradient = False
                y = paddle.to_tensor(y_data, dtype='float32')

                helper = LayerHelper('grad_add')
                out = helper.create_variable_for_type_inference("float")
                helper.append_op(
                    type="grad_add",
                    inputs={"X": x, "Y": y},
                    outputs={"Out": out},
                    attrs={"axis": -1},
                )

        _ = ir.translate_to_new_ir(main_program.desc)


303 304
if __name__ == "__main__":
    unittest.main()