to_string.py 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numpy as np
from paddle.fluid.layers import core
from paddle.fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype

__all__ = ['set_printoptions']


class PrintOptions(object):
    precision = 8
    threshold = 1000
    edgeitems = 3
    linewidth = 80
    sci_mode = False


DEFAULT_PRINT_OPTIONS = PrintOptions()


def set_printoptions(precision=None,
                     threshold=None,
                     edgeitems=None,
                     sci_mode=None):
    """Set the printing options for Tensor.
    NOTE: The function is similar with numpy.set_printoptions()

    Args:
        precision (int, optional): Number of digits of the floating number, default 8.
        threshold (int, optional): Total number of elements printed, default 1000.
        edgeitems (int, optional): Number of elements in summary at the begining and end of each dimension, defalt 3.
        sci_mode (bool, optional): Format the floating number with scientific notation or not, default False.
    
    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

C
cnn 已提交
55
            paddle.seed(10)
56 57 58 59 60
            a = paddle.rand([10, 20])
            paddle.set_printoptions(4, 100, 3)
            print(a)
            
            '''
61 62 63 64
            Tensor(shape=[10, 20], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
                   [[0.0002, 0.8503, 0.0135, ..., 0.9508, 0.2621, 0.6661],
                    [0.9710, 0.2605, 0.9950, ..., 0.4427, 0.9241, 0.9363],
                    [0.0948, 0.3226, 0.9955, ..., 0.1198, 0.0889, 0.9231],
65
                    ...,
66 67 68
                    [0.7206, 0.0941, 0.5292, ..., 0.4856, 0.1379, 0.0351],
                    [0.1745, 0.5621, 0.3602, ..., 0.2998, 0.4011, 0.1764],
                    [0.0728, 0.7786, 0.0314, ..., 0.2583, 0.1654, 0.0637]])
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            '''
    """
    kwargs = {}

    if precision is not None:
        check_type(precision, 'precision', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.precision = precision
        kwargs['precision'] = precision
    if threshold is not None:
        check_type(threshold, 'threshold', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.threshold = threshold
        kwargs['threshold'] = threshold
    if edgeitems is not None:
        check_type(edgeitems, 'edgeitems', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.edgeitems = edgeitems
        kwargs['edgeitems'] = edgeitems
    if sci_mode is not None:
        check_type(sci_mode, 'sci_mode', (bool), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.sci_mode = sci_mode
        kwargs['sci_mode'] = sci_mode
    #TODO(zhiqiu): support linewidth
    core.set_printoptions(**kwargs)


def _to_sumary(var):
    edgeitems = DEFAULT_PRINT_OPTIONS.edgeitems

    if len(var.shape) == 0:
        return var
    elif len(var.shape) == 1:
        if var.shape[0] > 2 * edgeitems:
100
            return np.concatenate([var[:edgeitems], var[-edgeitems:]])
101 102 103 104 105 106 107
        else:
            return var
    else:
        # recursively handle all dimensions
        if var.shape[0] > 2 * edgeitems:
            begin = [x for x in var[:edgeitems]]
            end = [x for x in var[-edgeitems:]]
108
            return np.stack([_to_sumary(x) for x in (begin + end)])
109
        else:
110
            return np.stack([_to_sumary(x) for x in var])
111 112


113
def _format_item(np_var, max_width=0, signed=False):
114 115 116 117 118 119 120 121 122 123 124 125 126
    if np_var.dtype == np.float32 or np_var.dtype == np.float64 or np_var.dtype == np.float16:
        if DEFAULT_PRINT_OPTIONS.sci_mode:
            item_str = '{{:.{}e}}'.format(
                DEFAULT_PRINT_OPTIONS.precision).format(np_var)
        elif np.ceil(np_var) == np_var:
            item_str = '{:.0f}.'.format(np_var)
        else:
            item_str = '{{:.{}f}}'.format(
                DEFAULT_PRINT_OPTIONS.precision).format(np_var)
    else:
        item_str = '{}'.format(np_var)

    if max_width > len(item_str):
127 128 129 130 131 132 133 134
        if signed:  # handle sign character for tenosr with negative item
            if np_var < 0:
                return item_str.ljust(max_width)
            else:
                return ' ' + item_str.ljust(max_width - 1)
        else:
            return item_str.ljust(max_width)
    else:  # used for _get_max_width
135 136 137 138 139
        return item_str


def _get_max_width(var):
    max_width = 0
140 141 142 143
    signed = False
    for item in list(var.flatten()):
        if (not signed) and (item < 0):
            signed = True
144 145 146
        item_str = _format_item(item)
        max_width = max(max_width, len(item_str))

147
    return max_width, signed
148

149 150

def _format_tensor(var, sumary, indent=0, max_width=0, signed=False):
151 152 153
    edgeitems = DEFAULT_PRINT_OPTIONS.edgeitems

    if len(var.shape) == 0:
L
Leo Chen 已提交
154 155
        # currently, shape = [], i.e., scaler tensor is not supported.
        # If it is supported, it should be formatted like this.
156
        return _format_item(var.item(0), max_width, signed)
157 158 159
    elif len(var.shape) == 1:
        if sumary and var.shape[0] > 2 * edgeitems:
            items = [
160 161
                _format_item(item, max_width, signed)
                for item in list(var)[:DEFAULT_PRINT_OPTIONS.edgeitems]
162
            ] + ['...'] + [
163 164
                _format_item(item, max_width, signed)
                for item in list(var)[-DEFAULT_PRINT_OPTIONS.edgeitems:]
165 166 167
            ]
        else:
            items = [
168
                _format_item(item, max_width, signed) for item in list(var)
169 170 171 172 173 174 175
            ]
        s = ', '.join(items)
        return '[' + s + ']'
    else:
        # recursively handle all dimensions
        if sumary and var.shape[0] > 2 * edgeitems:
            vars = [
176 177
                _format_tensor(x, sumary, indent + 1, max_width, signed)
                for x in var[:edgeitems]
178
            ] + ['...'] + [
179 180
                _format_tensor(x, sumary, indent + 1, max_width, signed)
                for x in var[-edgeitems:]
181 182
            ]
        else:
183 184 185 186
            vars = [
                _format_tensor(x, sumary, indent + 1, max_width, signed)
                for x in var
            ]
187 188 189 190 191 192 193 194 195 196 197 198 199 200

        return '[' + (',' + '\n' * (len(var.shape) - 1) + ' ' *
                      (indent + 1)).join(vars) + ']'


def to_string(var, prefix='Tensor'):
    indent = len(prefix) + 1

    _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},\n{indent}{data})"

    tensor = var.value().get_tensor()
    if not tensor._is_initialized():
        return "Tensor(Not initialized)"

201 202
    np_var = var.numpy()

203 204 205 206 207 208 209 210 211 212 213
    if len(var.shape) == 0:
        size = 0
    else:
        size = 1
        for dim in var.shape:
            size *= dim

    sumary = False
    if size > DEFAULT_PRINT_OPTIONS.threshold:
        sumary = True

214 215 216 217
    max_width, signed = _get_max_width(_to_sumary(np_var))

    data = _format_tensor(
        np_var, sumary, indent=indent, max_width=max_width, signed=signed)
218 219 220 221 222 223 224 225 226

    return _template.format(
        prefix=prefix,
        shape=var.shape,
        dtype=convert_dtype(var.dtype),
        place=var._place_str,
        stop_gradient=var.stop_gradient,
        indent=' ' * indent,
        data=data)