test_inference_model_io.py 16.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

D
dzhwinter 已提交
17 18
import unittest

19
import os
M
minqiyang 已提交
20
import six
21
import tempfile
D
dzhwinter 已提交
22
import numpy as np
23
import paddle.fluid.core as core
24 25
import paddle.fluid as fluid
import warnings
26

27
import paddle
28 29 30
import paddle.fluid.executor as executor
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
T
tangwei12 已提交
31
from paddle.fluid.compiler import CompiledProgram
32
from paddle.fluid.framework import Program, program_guard
33
from paddle.fluid.io import save_inference_model, load_inference_model, save_persistables
D
dzhwinter 已提交
34
from paddle.fluid.transpiler import memory_optimize
35

36
paddle.enable_static()
37 38


39 40 41 42 43 44
class InferModel(object):
    def __init__(self, list):
        self.program = list[0]
        self.feed_var_names = list[1]
        self.fetch_vars = list[2]

45

46
class TestBook(unittest.TestCase):
47
    def test_fit_line_inference_model(self):
48 49 50
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model")
        UNI_MODEL_DIR = os.path.join(root_path.name, "inference_model1")
51 52 53

        init_program = Program()
        program = Program()
54 55 56 57 58 59 60 61

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
62
            avg_cost = layers.mean(cost)
63 64 65

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
66 67 68 69 70 71

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

M
minqiyang 已提交
72
        for i in six.moves.xrange(100):
73 74
            tensor_x = np.array([[1, 1], [1, 2], [3, 4], [5,
                                                          2]]).astype("float32")
D
dzhwinter 已提交
75
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
76 77 78 79 80 81

            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

82
        # Separated model and unified model
83
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
84 85 86 87 88 89
        save_inference_model(UNI_MODEL_DIR, ["x", "y"], [avg_cost], exe,
                             program, 'model', 'params')
        main_program = program.clone()._prune_with_input(
            feeded_var_names=["x", "y"], targets=[avg_cost])
        params_str = save_persistables(exe, None, main_program, None)

D
dzhwinter 已提交
90 91 92 93
        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]
94

M
minqiyang 已提交
95
        six.moves.reload_module(executor)  # reload to build a new scope
96

97
        model_0 = InferModel(load_inference_model(MODEL_DIR, exe))
98 99
        with open(os.path.join(UNI_MODEL_DIR, 'model'), "rb") as f:
            model_str = f.read()
100
        model_1 = InferModel(
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            load_inference_model(None, exe, model_str, params_str))

        for model in [model_0, model_1]:
            outs = exe.run(model.program,
                           feed={
                               model.feed_var_names[0]: tensor_x,
                               model.feed_var_names[1]: tensor_y
                           },
                           fetch_list=model.fetch_vars)
            actual = outs[0]

            self.assertEqual(model.feed_var_names, ["x", "y"])
            self.assertEqual(len(model.fetch_vars), 1)
            print("fetch %s" % str(model.fetch_vars[0]))
            self.assertEqual(expected, actual)

117 118
        root_path.cleanup()

119 120
        self.assertRaises(ValueError, fluid.io.load_inference_model, None, exe,
                          model_str, None)
121 122


D
dzhwinter 已提交
123 124
class TestSaveInferenceModel(unittest.TestCase):
    def test_save_inference_model(self):
125 126
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model2")
D
dzhwinter 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

D
dzhwinter 已提交
144
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
145
        root_path.cleanup()
D
dzhwinter 已提交
146

147
    def test_save_inference_model_with_auc(self):
148 149
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model4")
150 151 152 153 154 155
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
156
            y = layers.data(name='y', shape=[1], dtype='int32')
157 158 159 160 161 162 163 164 165 166 167 168 169 170
            predict = fluid.layers.fc(input=x, size=2, act='softmax')
            acc = fluid.layers.accuracy(input=predict, label=y)
            auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                                  label=y)
            cost = fluid.layers.cross_entropy(input=predict, label=y)
            avg_cost = fluid.layers.mean(x=cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe,
                                 program)
171
            root_path.cleanup()
172 173 174 175
            expected_warn = "please ensure that you have set the auc states to zeros before saving inference model"
            self.assertTrue(len(w) > 0)
            self.assertTrue(expected_warn == str(w[0].message))

D
dzhwinter 已提交
176

T
tangwei12 已提交
177 178
class TestInstance(unittest.TestCase):
    def test_save_inference_model(self):
179 180
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model3")
T
tangwei12 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        # will print warning message

        cp_prog = CompiledProgram(program).with_data_parallel(
            loss_name=avg_cost.name)

C
chengduo 已提交
203
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, cp_prog)
T
tangwei12 已提交
204 205
        self.assertRaises(TypeError, save_inference_model,
                          [MODEL_DIR, ["x", "y"], [avg_cost], [], cp_prog])
206
        root_path.cleanup()
T
tangwei12 已提交
207 208


209 210
class TestSaveInferenceModelNew(unittest.TestCase):
    def test_save_and_load_inference_model(self):
211 212
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model5")
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
        for i in six.moves.xrange(3):
            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

241 242
        self.assertRaises(ValueError, paddle.static.save_inference_model, None,
                          ['x', 'y'], [avg_cost], exe)
243
        self.assertRaises(ValueError, paddle.static.save_inference_model,
244
                          MODEL_DIR + "/", [x, y], [avg_cost], exe)
245
        self.assertRaises(ValueError, paddle.static.save_inference_model,
246
                          MODEL_DIR, ['x', 'y'], [avg_cost], exe)
247
        self.assertRaises(ValueError, paddle.static.save_inference_model,
248
                          MODEL_DIR, 'x', [avg_cost], exe)
249
        self.assertRaises(ValueError, paddle.static.save_inference_model,
250
                          MODEL_DIR, [x, y], ['avg_cost'], exe)
251
        self.assertRaises(ValueError, paddle.static.save_inference_model,
252
                          MODEL_DIR, [x, y], 'avg_cost', exe)
253 254 255 256

        model_path = MODEL_DIR + "_isdir.pdmodel"
        os.makedirs(model_path)
        self.assertRaises(ValueError, paddle.static.save_inference_model,
257
                          MODEL_DIR + "_isdir", [x, y], [avg_cost], exe)
258 259 260 261 262
        os.rmdir(model_path)

        params_path = MODEL_DIR + "_isdir.pdmodel"
        os.makedirs(params_path)
        self.assertRaises(ValueError, paddle.static.save_inference_model,
263
                          MODEL_DIR + "_isdir", [x, y], [avg_cost], exe)
264 265
        os.rmdir(params_path)

266 267
        paddle.static.io.save_inference_model(MODEL_DIR, [x, y], [avg_cost],
                                              exe)
268 269 270 271 272 273 274 275 276 277 278

        self.assertTrue(os.path.exists(MODEL_DIR + ".pdmodel"))
        self.assertTrue(os.path.exists(MODEL_DIR + ".pdiparams"))

        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]

        six.moves.reload_module(executor)  # reload to build a new scope

279 280
        self.assertRaises(ValueError, paddle.static.load_inference_model, None,
                          exe)
281
        self.assertRaises(ValueError, paddle.static.load_inference_model,
282
                          MODEL_DIR + "/", exe)
283
        self.assertRaises(ValueError, paddle.static.load_inference_model,
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
                          [MODEL_DIR], exe)
        self.assertRaises(
            ValueError,
            paddle.static.load_inference_model,
            MODEL_DIR,
            exe,
            pserver_endpoints=None)
        self.assertRaises(
            ValueError,
            paddle.static.load_inference_model,
            MODEL_DIR,
            exe,
            unsupported_param=None)
        self.assertRaises(
            (TypeError, ValueError),
            paddle.static.load_inference_model,
            None,
            exe,
            model_filename="illegal",
            params_filename="illegal")

        model = InferModel(
            paddle.static.io.load_inference_model(MODEL_DIR, exe))
307
        root_path.cleanup()
308 309 310 311 312 313 314 315 316 317 318 319

        outs = exe.run(model.program,
                       feed={
                           model.feed_var_names[0]: tensor_x,
                           model.feed_var_names[1]: tensor_y
                       },
                       fetch_list=model.fetch_vars)
        actual = outs[0]

        self.assertEqual(model.feed_var_names, ["x", "y"])
        self.assertEqual(len(model.fetch_vars), 1)
        self.assertEqual(expected, actual)
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        # test save_to_file content type should be bytes
        self.assertRaises(ValueError, paddle.static.io.save_to_file, '', 123)
        # test _get_valid_program
        self.assertRaises(TypeError, paddle.static.io._get_valid_program, 0)
        p = Program()
        cp = CompiledProgram(p)
        paddle.static.io._get_valid_program(cp)
        self.assertTrue(paddle.static.io._get_valid_program(cp) is p)
        cp._program = None
        self.assertRaises(TypeError, paddle.static.io._get_valid_program, cp)

    def test_serialize_program_and_persistables(self):
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
        for i in six.moves.xrange(3):
            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])
359

360 361 362 363 364 365 366 367 368 369 370
        # test if return type of serialize_program is bytes
        res1 = paddle.static.io.serialize_program([x, y], [avg_cost])
        self.assertTrue(isinstance(res1, bytes))
        # test if return type of serialize_persistables is bytes
        res2 = paddle.static.io.serialize_persistables([x, y], [avg_cost], exe)
        self.assertTrue(isinstance(res2, bytes))
        # test if variables in program is empty
        res = paddle.static.io._serialize_persistables(Program(), None)
        self.assertEqual(res, None)
        self.assertRaises(TypeError, paddle.static.io.deserialize_persistables,
                          None, None, None)
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    def test_normalize_program(self):
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
        for i in six.moves.xrange(3):
            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

        # test if return type of serialize_program is bytes
        res = paddle.static.normalize_program(program, [x, y], [avg_cost])
        self.assertTrue(isinstance(res, Program))
        # test program type
        self.assertRaises(TypeError, paddle.static.normalize_program, None,
                          [x, y], [avg_cost])
        # test feed_vars type
        self.assertRaises(TypeError, paddle.static.normalize_program, program,
                          'x', [avg_cost])
        # test fetch_vars type
        self.assertRaises(TypeError, paddle.static.normalize_program, program,
                          [x, y], 'avg_cost')

414

415 416 417 418 419 420 421 422
class TestLoadInferenceModelError(unittest.TestCase):
    def test_load_model_not_exist(self):
        place = core.CPUPlace()
        exe = executor.Executor(place)
        self.assertRaises(ValueError, load_inference_model,
                          './test_not_exist_dir', exe)


423 424
if __name__ == '__main__':
    unittest.main()