fft.py 66.3 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24
from typing import Sequence
import numpy as np
import paddle
from .tensor.attribute import is_complex, is_floating_point, is_interger, _real_to_complex_dtype, _complex_to_real_dtype
from .fluid.framework import in_dygraph_mode
from . import _C_ops
from .fluid.data_feeder import check_variable_and_dtype
from .fluid.layer_helper import LayerHelper

__all__ = [
Z
zhiboniu 已提交
25 26 27 28 29 30
    'fft',
    'ifft',
    'rfft',
    'irfft',
    'hfft',
    'ihfft',
31 32 33 34 35
    'fft2',
    'ifft2',
    'rfft2',
    'irfft2',
    'hfft2',
Z
zhiboniu 已提交
36
    'ihfft2',
37 38 39 40 41
    'fftn',
    'ifftn',
    'rfftn',
    'irfftn',
    'hfftn',
Z
zhiboniu 已提交
42 43 44 45
    'ihfftn',
    'fftfreq',
    'rfftfreq',
    'fftshift',
46
    'ifftshift',
Z
zhiboniu 已提交
47
]
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302


def _check_normalization(norm):
    if norm not in ['forward', 'backward', 'ortho']:
        raise ValueError(
            "Unexpected norm: {}. Norm should be forward, backward or ortho".
            format(norm))


def _check_fft_n(n):
    if not isinstance(n, int):
        raise ValueError(
            "Invalid FFT argument n({}), it shoule be an integer.".format(n))
    if n <= 0:
        raise ValueError(
            "Invalid FFT argument n({}), it should be positive.".format(n))


def _check_fft_shape(x, s):
    ndim = x.ndim
    if not isinstance(s, Sequence):
        raise ValueError(
            "Invaid FFT argument s({}), it should be a sequence of integers.")

    if len(s) > ndim:
        raise ValueError(
            "Length of FFT argument s should not be larger than the rank of input. "
            "Received s: {}, rank of x: {}".format(s, ndim))
    for size in s:
        if not isinstance(size, int) or size <= 0:
            raise ValueError("FFT sizes {} contains invalid value ({})".format(
                s, size))


def _check_fft_axis(x, axis):
    ndim = x.ndim
    if not isinstance(axis, int):
        raise ValueError(
            "Invalid FFT axis ({}), it shoule be an integer.".format(axis))
    if axis < -ndim or axis >= ndim:
        raise ValueError(
            "Invalid FFT axis ({}), it should be in range [-{}, {})".format(
                axis, ndim, ndim))


def _check_fft_axes(x, axes):
    ndim = x.ndim
    if not isinstance(axes, Sequence):
        raise ValueError(
            "Invalid FFT axes ({}), it should be a sequence of integers.".
            format(axes))
    if len(axes) > ndim:
        raise ValueError(
            "Length of fft axes should not be larger than the rank of input. "
            "Received, len of axes: {}, rank of x: {}".format(len(axes), ndim))
    for axis in axes:
        if not isinstance(axis, int) or axis < -ndim or axis >= ndim:
            raise ValueError(
                "FFT axes {} contains invalid value ({}), it should be in range [-{}, {})".
                format(axes, axis, ndim, ndim))


def _resize_fft_input(x, s, axes):
    if len(s) != len(axes):
        raise ValueError("length of `s` should equals length of `axes`.")
    shape = x.shape
    ndim = x.ndim

    axes_to_pad = []
    paddings = []
    axes_to_slice = []
    slices = []
    for i, axis in enumerate(axes):
        if shape[axis] < s[i]:
            axes_to_pad.append(axis)
            paddings.append(s[i] - shape[axis])
        elif shape[axis] > s[i]:
            axes_to_slice.append(axis)
            slices.append((0, s[i]))

    if axes_to_slice:
        x = paddle.slice(
            x,
            axes_to_slice,
            starts=[item[0] for item in slices],
            ends=[item[1] for item in slices])
    if axes_to_pad:
        padding_widths = [0] * (2 * ndim)
        for axis, pad in zip(axes_to_pad, paddings):
            padding_widths[2 * axis + 1] = pad
        x = paddle.nn.functional.pad(x, padding_widths)
    return x


def _normalize_axes(x, axes):
    ndim = x.ndim
    return [item if item >= 0 else (item + ndim) for item in axes]


def _check_at_least_ndim(x, rank):
    if x.ndim < rank:
        raise ValueError("The rank of the input ({}) should >= {}".format(
            x.ndim, rank))


# public APIs 1d
def fft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Calculate one-dimensional discrete Fourier transform.

    This function uses the efficient fast Fourier transform (FFT) algorithm [1] to 
    calculate the 1-D * n * point discrete Fourier transform (DFT).

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. If `n` is less than 
            the length input, the input will be cropped. If larger, the input is filled 
            with zeros. If `n` is not given, the input length along the axis specified 
            by `axis` is used.
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis 
            is used by default.       
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies 
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are 
            scaled by ``1/sqrt(n)``.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        complex tensor. The truncated or zero-padded input, transformed along the axis indicated 
        by `axis`, or the last one if `axis` is not specified.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.exp(3j * np.pi * np.arange(7) / 7)
            xp = paddle.to_tensor(x)
            fft_xp = paddle.fft.fft(xp).numpy()
            print(fft_xp)
            #  [1.+1.25396034e+00j 1.+4.38128627e+00j 1.-4.38128627e+00j
            #   1.-1.25396034e+00j 1.-4.81574619e-01j 1.+8.88178420e-16j
            #   1.+4.81574619e-01j]


    """
    if is_interger(x) or is_floating_point(x):
        return fft_r2c(
            x, n, axis, norm, forward=True, onesided=False, name=name)
    else:
        return fft_c2c(x, n, axis, norm, forward=True, name=name)


def ifft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Compute the 1-D inverse discrete Fourier Transform.

    This function computes the inverse of the 1-D *n*-point discrete Fourier transform 
    computed by `fft`.  In other words, ``ifft(fft(x)) == x`` to within numerical accuracy.

    The input should be ordered in the same way as is returned by `fft`,
    i.e.,

    * ``x[0]`` should contain the zero frequency term,
    * ``x[1:n//2]`` should contain the positive-frequency terms,
    * ``x[n//2 + 1:]`` should contain the negative-frequency terms, in
      increasing order starting from the most negative frequency.

    For an even number of input points, ``x[n//2]`` represents the sum of
    the values at the positive and negative Nyquist frequencies, as the two
    are aliased together. 

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. If `n` is less than 
            the length input, the input will be cropped. If larger, the input is filled 
            with zeros. If `n` is not given, the input length along the axis specified 
            by `axis` is used.
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis 
            is used by default.       
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies 
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are 
            scaled by ``1/sqrt(n)``.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        complex tensor. The truncated or zero-padded input, transformed along the axis indicated 
        by `axis`, or the last one if `axis` is not specified.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.exp(3j * np.pi * np.arange(7) / 7)
            xp = paddle.to_tensor(x)
            ifft_xp = paddle.fft.ifft(xp).numpy()
            print(ifft_xp)
            #  [0.14285714+1.79137191e-01j 0.14285714+6.87963741e-02j
            #   0.14285714+1.26882631e-16j 0.14285714-6.87963741e-02j
            #   0.14285714-1.79137191e-01j 0.14285714-6.25898038e-01j
            #   0.14285714+6.25898038e-01j]

    """
    if is_interger(x) or is_floating_point(x):
        return fft_r2c(
            x, n, axis, norm, forward=False, onesided=False, name=name)
    else:
        return fft_c2c(x, n, axis, norm, forward=False, name=name)


def rfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    The one dimensional FFT for real input.

    This function computes the one dimensional *n*-point discrete Fourier
    Transform (DFT) of a real-valued tensor by means of an efficient algorithm
    called the Fast Fourier Transform (FFT).

    When the DFT is computed for purely real input, the output is
    Hermitian-symmetric. This function does not compute the negative frequency 
    terms, and the length of the transformed axis of the output is therefore 
    ``n//2 + 1``.

    Args:
        x(Tensor) : Real-valued input tensor 
        n(int, optional): Number of points along transformation axis in the 
            input to use. If `n` is smaller than the length of the input, the 
            input is cropped. If it is larger, the input is padded with zeros. 
            If `n` is not given, the length of the input along the axis 
            specified by `axis` is used.
        axis(int, optional): Axis over which to compute the FFT. Default value 
            is last axis.
        norm(str, optional) : Normalization mode, indicates which direction of 
            the forward/backward  pair of transforms is scaled and with what 
            normalization factor. Include {"backward", "ortho", "forward"}, 
            default value is "backward".
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns:
        out(Tensor) : complex tensor

    Raises:


    Examples:
    .. code-block:: python
        import paddle

        x = paddle.to_tensor([0.0, 1.0, 0.0, 0.0])
        print(paddle.fft.rfft(x))
        # Tensor(shape=[3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [ (1+0j), -1j    , (-1+0j)])
    """
    return fft_r2c(x, n, axis, norm, forward=True, onesided=True, name=name)


def irfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Computes the inverse of `rfft`.

    This function calculates the inverse of the one-dimensional *n* point discrete 
    Fourier transform of the actual input calculated by "rfft". In other words, 
    ``irfft(rfft(a),len(a)) == a`` is within the numerical accuracy range.

    The input shall be in the form of "rfft", i.e. the actual zero frequency term, 
    followed by the complex positive frequency term, in the order of increasing frequency. 
    Because the discrete Fourier transform of the actual input is Hermite symmetric, 
    the negative frequency term is regarded as the complex conjugate term of the corresponding 
    positive frequency term.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. For `n` output
            points, ``n//2 + 1``input points are necessary. If the length of the input tensor is greater 
            than `n`, it will be cropped, if it is shorter than this, fill in zero. If `n` is not given, 
            it is considered to be ``2 * (k-1)``, where ``k`` is the length of the input axis specified 
            along the ` axis'.
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis 
            is used by default.       
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` . 

    Returns:
        Real tensor. Truncated or zero fill input for the transformation along the axis indicated by 
        `axis`, or the last input if `axis` is not specified. The length of the conversion axis 
        is `n`, or ``2 * k-2``, if `k` is None, where `k` is the length of the input conversion axis. 
        If the output is an odd number, you need to specify the value of 'n', such as ``2 * k-1``
        in some cases.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([1, -1j, -1])
            xp = paddle.to_tensor(x)
            irfft_xp = paddle.fft.irfft(xp).numpy()
            print(irfft_xp)
            #  [0. 1. 0. 0.]

    """
    return fft_c2r(x, n, axis, norm, forward=False, name=name)


def hfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Compute the FFT of a signal that has Hermitian symmetry, a real
    spectrum.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. For `n` output
            points, ``n//2 + 1`` input points are necessary. If the length of the input tensor is greater 
            than `n`, it will be cropped, if it is shorter than this, fill in zero. If `n` is not given, 
            it is considered to be ``2 * (k-1)``, where ``k`` is the length of the input axis specified 
            along the ` axis'.
        axis (int,optional): Axis used to calculate FFT. If not specified, the last axis 
            is used by default.       
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` . 

    Returns:
        Real tensor. Truncated or zero fill input for the transformation along the axis indicated by 
        `axis`, or the last input if `axis` is not specified. The length of the conversion axis 
        is `n`, or ``2 * k-2``, if `k` is None, where `k` is the length of the input conversion axis. 
        If the output is an odd number, you need to specify the value of 'n', such as ``2 * k-1`` in 
        some cases.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([1, -1j, -1])
            xp = paddle.to_tensor(x)
            hfft_xp = paddle.fft.hfft(xp).numpy()
            print(hfft_xp)
            #  [0. 0. 0. 4.]
    """

    return fft_c2r(x, n, axis, norm, forward=True, name=name)


def ihfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    The inverse FFT of a signal that has Hermitian symmetry.

    This function computes the one dimensional *n*-point inverse FFT of a signal 
    that has Hermitian symmetry by means of an efficient algorithm called 
    the Fast Fourier Transform (FFT).

    When the DFT is computed for purely real input, the output is
    Hermitian-symmetric. This function does not compute the negative frequency 
    terms, and the length of the transformed axis of the output is therefore 
    ``n//2 + 1``.

    Args:
        x(Tensor): Input tensor.
        n(int, optional): The number of points along transformation axis in the 
            input to use.  If `n` is smaller than the length of the input, the 
            input is cropped.  If it is larger, the input is padded with zeros. 
            If `n` is not given, the length of the input along the axis 
            specified by `axis` is used.
        axis(int, optional) : Axis over which to compute the inverse FFT. If not
            given, the last axis is used.
        norm(str, optional) : Normalization mode, indicates which direction of 
            the forward/backward pair of transforms is scaled and with what 
            normalization factor. Include {"backward", "ortho", "forward"}, 
            default value is "backward".
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns:
        out(Tensor) : complex tensor.

    Examples:
    .. code-block:: python
        import paddle 

        spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0])
        print(paddle.fft.ifft(spectrum))
        # Tensor(shape=[6], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #       [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j), (2.3333334922790527+1.9868215517249155e-08j),  (1+1.9868215517249155e-08j)])
        print(paddle.fft.ihfft(spectrum))
        #  Tensor(shape = [4], dtype = complex64, place = CUDAPlace(0), stop_gradient = True,
        #         [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j)])

    """
    return fft_r2c(x, n, axis, norm, forward=False, onesided=True, name=name)


# public APIs nd
def fftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D discrete Fourier Transform.

    This function calculates the n-D discrete Fourier transform on any number of axes 
    in the M-D array by fast Fourier transform (FFT).

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
            This corresponds to ``n`` for ``fft(x, n)``.
            Along any axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used.
        axes (sequence of ints, optional): Axes used to calculate FFT. If not given, the last ``len(s)``
            axes are used, or all axes if `s` is also not specified.      
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies 
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are 
            scaled by ``1/sqrt(n)``.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        complex tensor. The truncated or zero-padded input, transformed along the axes indicated by 
        `axes`, or by a combination of `s` and `x`, as explained in the parameters section above.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:4, :4, :4][1]
            xp = paddle.to_tensor(x)
            fftn_xp = paddle.fft.fftn(xp, axes=(1, 2)).numpy()
            print(fftn_xp)
            #  [[[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
            #   [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
            #   [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
            #   [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]]
    """
    if is_interger(x) or is_floating_point(x):
        return fftn_r2c(
            x, s, axes, norm, forward=True, onesided=False, name=name)
    else:
        return fftn_c2c(x, s, axes, norm, forward=True, name=name)


def ifftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D inverse discrete Fourier Transform.

    This function computes the inverse of the N-D discrete
    Fourier Transform over any number of axes in an M-D array by
    means of the Fast Fourier Transform (FFT).  In other words,
    ``ifftn(fftn(x)) == x`` to within numerical accuracy.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fftn`, i.e., it should have the term for zero frequency
    in all axes in the low-order corner, the positive frequency terms in the
    first half of all axes, the term for the Nyquist frequency in the middle
    of all axes and the negative frequency terms in the second half of all
    axes, in order of decreasingly negative frequency.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
            This corresponds to ``n`` for ``fft(x, n)``.
            Along any axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used.
        axes (sequence of ints, optional): Axes used to calculate FFT. If not given, the last ``len(s)``
            axes are used, or all axes if `s` is also not specified.      
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies 
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are 
            scaled by ``1/sqrt(n)``.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        complex tensor. The truncated or zero-padded input, transformed along the axes indicated by 
        `axes`, or by a combination of `s` and `x`, as explained in the parameters section above.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.eye(3)
            xp = paddle.to_tensor(x)
            ifftn_xp = paddle.fft.ifftn(xp, axes=(1,)).numpy()
            print(ifftn_xp)

            #   [[ 0.33333333+0.j          0.33333333+0.j          0.33333333-0.j        ]
            #   [ 0.33333333+0.j         -0.16666667+0.28867513j -0.16666667-0.28867513j]
            #   [ 0.33333333+0.j         -0.16666667-0.28867513j -0.16666667+0.28867513j]]

    """
    if is_interger(x) or is_floating_point(x):
        return fftn_r2c(
            x, s, axes, norm, forward=False, onesided=False, name=name)
    else:
        return fftn_c2c(x, s, axes, norm, forward=False, name=name)


def rfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    The N dimensional FFT for real input.

    This function computes the N-dimensional discrete Fourier Transform over
    any number of axes in an M-dimensional real array by means of the Fast
    Fourier Transform (FFT).  By default, all axes are transformed, with the
    real transform performed over the last axis, while the remaining
    transforms are complex.

    The transform for real input is performed over the last transformation
    axis, as by `rfft`, then the transform over the remaining axes is
    performed as by `fftn`.  The order of the output is as for `rfft` for the
    final transformation axis, and as for `fftn` for the remaining
    transformation axes.

    Args:
        x(Tensor) : Input tensor, taken to be real.
        s(Sequence[int]) : Shape to use from the exec fft. The final element of 
            `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining 
            axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if 
            the given shape is smaller than that of the input, the input is 
            cropped.  If it is larger, the input is padded with zeros. if `s` is 
            not given, the shape of the input along the axes specified by `axes` 
            is used.
        axes(Sequence[int]) : Axes over which to compute the FFT.  If not given, 
            the last ``len(s)`` axes are used, or all axes if `s` is also not 
            specified.
        norm(str, optional) : Normalization mode, indicates which direction of 
            the forward/backward pair of transforms is scaled and with what 
            normalization factor. Include {"backward", "ortho", "forward"}, 
            default value is "backward".
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns:
        out(Tensor): complex tensor


    Raises:
        ValueError: If `s` and `axes` have different length.

    Examples:
    .. code-block:: python
        import paddle

        # default, all axis will be used to exec fft
        x = paddle.ones((2, 3, 4))
        print(paddle.fft.rfftn(x))
        # Tensor(shape=[2, 3, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[[(24+0j), 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ]],
        #
        #         [[0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ]]])

        # use axes(2, 0)
        print(paddle.fft.rfftn(x, axes=(2, 0)))
        # Tensor(shape=[2, 3, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[[(8+0j), 0j     , 0j     ],
        #          [(8+0j), 0j     , 0j     ],
        #          [(8+0j), 0j     , 0j     ]],
        #
        #         [[0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ]]])

    """
    return fftn_r2c(x, s, axes, norm, forward=True, onesided=True, name=name)


def irfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Computes the inverse of `rfftn`.

    This function computes the inverse of the N-D discrete
    Fourier Transform for real input over any number of axes in an
    M-D array by means of the Fast Fourier Transform (FFT). In
    other words, ``irfftn(rfftn(x), x.shape) == x`` to within numerical
    accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`,
    and for the same reason.)

    The input should be ordered in the same way as is returned by `rfftn`,
    i.e., as for `irfft` for the final transformation axis, and as for `ifftn`
    along all the other axes.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): The length of the output transform axis. 
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
            number of input points used along this axis, except for the last axis,
            where ``s[-1]//2+1`` points of the input are used. Along any axis, if 
            the shape indicated by `s` is smaller than that of the input, the input 
            is cropped. If it is larger, the input is padded with zeros. 
            If `s` is not given, the shape of the input along the axes specified by axes 
            is used. Except for the last axis which is taken to be ``2*(k-1)`` where 
            ``k`` is the length of the input along that axis.
        axes (sequence of ints, optional): Axes over which to compute the inverse FFT. If not given, the last
            `len(s)` axes are used, or all axes if `s` is also not specified.      
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`. 
    
    Returns:
        Real tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`, 
        or by a combination of `s` or `x`, as explained in the parameters section above. The length of 
        each transformed axis is as given by the corresponding element of `s`, or the length of the input
        in every axis except for the last one if `s` is not given. In the final transformed axis the length
        of the output when `s` is not given is ``2*(m-1)``, where ``m`` is the length of the final 
        transformed axis of the input. To get an odd number of output points in the final axis, 
        `s` must be specified.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = (np.array([2, 2, 3]) + 1j * np.array([2, 2, 3])).astype(np.complex128)
            xp = paddle.to_tensor(x)
            irfftn_xp = paddle.fft.irfftn(xp).numpy()
            print(irfftn_xp)
            #  [ 2.25 -1.25  0.25  0.75]
    
    """
    return fftn_c2r(x, s, axes, norm, forward=False, name=name)


def hfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D FFT of Hermitian symmetric complex input, i.e., a
    signal with a real spectrum.

    This function calculates the n-D discrete Fourier transform of Hermite symmetric 
    complex input on any axis in M-D array by fast Fourier transform (FFT). 
    In other words, ``ihfftn(hfftn(x, s)) == x is within the numerical accuracy range. 
    (``s`` here are ``x.shape`` and ``s[-1] = x.shape[- 1] * 2 - 1``. This is necessary 
    for the same reason that ``irfft` requires ``x.shape``.)

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): The length of the output transform axis. 
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
            number of input points used along this axis, except for the last axis,
            where ``s[-1]//2+1`` points of the input are used. Along any axis, if 
            the shape indicated by `s` is smaller than that of the input, the input 
            is cropped. If it is larger, the input is padded with zeros. 
            If `s` is not given, the shape of the input along the axes specified by axes 
            is used. Except for the last axis which is taken to be ``2*(k-1)`` where 
            ``k`` is the length of the input along that axis.
        axes (sequence of ints, optional): Axes over which to compute the inverse FFT. If not given, the last
            `len(s)` axes are used, or all axes if `s` is also not specified.      
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`. 
    
    Returns:
        Real tensor. Truncate or zero fill input, transforming along the axis indicated by axis or 
        a combination of `s` or `X`.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = (np.array([2, 2, 3]) + 1j * np.array([2, 2, 3])).astype(np.complex128)
            xp = paddle.to_tensor(x)
            hfftn_xp = paddle.fft.hfftn(xp).numpy()
            print(hfftn_xp)
            #  [ 9.  3.  1. -5.]


    """
    return fftn_c2r(x, s, axes, norm, forward=True, name=name)


def ihfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    The n dimensional inverse FFT of a signal that has Hermitian symmetry.

    This function computes the n dimensional inverse FFT over any number of axes 
    in an M-dimensional of a signal that has Hermitian symmetry by means of an 
    efficient algorithm called the Fast Fourier Transform (FFT).

    Args:
        x(Tensor): Input tensor.
        s(Sequence[int], optional) : Shape (length along each transformed axis) 
            to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis 
            1, etc.). Along any axis, if the given shape is smaller than that 
            of the input, the input is cropped. If it is larger, the input is 
            padded with zeros. if `s` is not given, the shape of the input 
            along the axes specified by `axes` is used.
        axis(Sequence[int], optional) : Axis over which to compute the inverse FFT. If not
            given, the last axis is used.
        norm(str, optional) : Normalization mode, indicates which direction of 
            the forward/backward pair of transforms is scaled and with what 
            normalization factor. Include {"backward", "ortho", "forward"}, 
            default value is "backward".
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns:
        out(Tensor) : complex tensor.

    Examples:
    .. code-block:: python
        import paddle 

        spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0])
        print(paddle.fft.ifft(spectrum))
        # Tensor(shape=[6], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #       [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j), (2.3333334922790527+1.9868215517249155e-08j),  (1+1.9868215517249155e-08j)])
        print(paddle.fft.ihfft(spectrum))
        #  Tensor(shape = [4], dtype = complex64, place = CUDAPlace(0), stop_gradient = True,
        #         [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j)])

    """
    return fftn_r2c(x, s, axes, norm, forward=False, onesided=True, name=name)


# public APIs 2d
def fft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D discrete Fourier Transform

    This function computes the N-D discrete Fourier Transform
    over any axes in an M-D array by means of the
    Fast Fourier Transform (FFT). By default, the transform is computed over
    the last two axes of the input array, i.e., a 2-dimensional FFT.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output. 
            It should be a sequence of 2 integers. This corresponds to ``n`` for ``fft(x, n)``. 
            Along each axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used. Default is None.
        axes (sequence of ints, optional):  Axes over which to compute the FFT. It should be a 
            sequence of 2 integers. If not specified, the last two axes are used by default.       
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`. 
    
    Returns:
        Complex tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`, 
        or the last two axes if `axes` is not given.
    
    Raises:
        ValueError: if `s` not be a sequence of 2 integers or None.
        ValueError: if `axes` not be a sequence of 2 integers or None.
        ValueError: If the input dimension is smaller than 2.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:2, :2][1]
            xp = paddle.to_tensor(x)
            fft2_xp = paddle.fft.fft2(xp).numpy()
            print(fft2_xp)
            #  [[ 2.+0.j -2.+0.j]
            #   [ 0.+0.j  0.+0.j]]

    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".
                format(s))
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".
                format(axes))
    return fftn(x, s, axes, norm, name)


def ifft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D inverse discrete Fourier Transform.

    This function computes the inverse of the 2-D discrete Fourier
    Transform over any number of axes in an M-D array by means of
    the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(x)) == x``
    to within numerical accuracy. By default, the inverse transform is
    computed over the last two axes of the input array.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fft2`, i.e., it should have the term for zero frequency
    in the low-order corner of the two axes, the positive frequency terms in
    the first half of these axes, the term for the Nyquist frequency in the
    middle of the axes and the negative frequency terms in the second half of
    both axes, in order of decreasingly negative frequency.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output. 
            It should be a sequence of 2 integers. This corresponds to ``n`` for ``fft(x, n)``. 
            Along each axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used. Default is None.
        axes (sequence of ints, optional):  Axes over which to compute the FFT. It should be a 
            sequence of 2 integers. If not specified, the last two axes are used by default.       
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Complex tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`, 
        or the last two axes if `axes` is not given.

    Raises:
        ValueError: if `s` not be a sequence of 2 integers or None.
        ValueError: if `axes` not be a sequence of 2 integers or None.
        ValueError: If the input dimension is smaller than 2.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:2, :2][1]
            xp = paddle.to_tensor(x)
            ifft2_xp = paddle.fft.ifft2(xp).numpy()
            print(ifft2_xp)
            #  [[ 0.5+0.j -0.5+0.j]
            #   [ 0. +0.j  0. +0.j]]
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".
                format(s))
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".
                format(axes))
    return ifftn(x, s, axes, norm, name)


def rfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    The two dimensional FFT with real tensor input.

    This is really just `rfftn` with different default behavior.
    For more details see `rfftn`.

    Args:
        x(Tensor): Input tensor, taken to be real.
        s(Sequence[int]) : Shape of the FFT.
        axes(Sequence[int], optional): Axes over which to compute the FFT.
        norm(str, optional) : {"backward", "ortho", "forward"}, 
            default is "backward". Indicates which direction of the 
            forward/backward pair of transforms is scaled and with what 
            normalization factor.
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns: 
        out(Tensor): The result of the real 2-D FFT.

    Raises:


    Examples:

    .. code-block:: python
        import paddle
        import numpy as np

        x = paddle.to_tensor(np.mgrid[:5, :5][0].astype(np.float32))
        print(paddle.fft.rfft2(x))
        # Tensor(shape=[5, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[ (50+0j)                                        ,  (1.1920928955078125e-07+0j)                    ,  0j                                             ],
        #         [(-12.5+17.204774856567383j)                     , (-9.644234211236835e-08+7.006946134424652e-08j) ,  0j                                             ],
        #         [(-12.500000953674316+4.061495304107666j)        , (3.6837697336977726e-08-1.1337477445749755e-07j),  0j                                             ],
        #         [(-12.500000953674316-4.061495304107666j)        , (3.6837697336977726e-08+1.1337477445749755e-07j),  0j                                             ],
        #         [(-12.5-17.204774856567383j)                     , (-9.644234211236835e-08-7.006946134424652e-08j) ,  0j                                             ]])
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".
                format(s))
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".
                format(axes))
    return rfftn(x, s, axes, norm, name)


def irfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Computes the inverse of `rfft2`.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape of the real output to the inverse FFT. Default is None.
        axes (sequence of ints, optional): The axes over which to compute the inverse FFT. Axes 
            must be two-dimensional. If not specified, the last two axes are used by default.       
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` . 
    
    Returns:
        Real tensor. The result of the inverse real 2-D FFT.

    Raises:
        ValueError: if `s` not be a sequence of 2 integers or None.
        ValueError: if `axes` not be a sequence of 2 integers or None.
        ValueError: If the input dimension is smaller than 2.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = (np.array([[3,2,3],[2, 2, 3]]) + 1j * np.array([[3,2,3],[2, 2, 3]])).astype(np.complex128)
            xp = paddle.to_tensor(x)
            irfft2_xp = paddle.fft.irfft2(xp).numpy()
            print(irfft2_xp)
            #  [[ 2.375 -1.125  0.375  0.875]
            #   [ 0.125  0.125  0.125  0.125]]

    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".
                format(s))
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".
                format(axes))
    return irfftn(x, s, axes, norm, name)


def hfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D FFT of a Hermitian complex array.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape of the real output. Default is None.
        axes (sequence of ints, optional):  Axes over which to compute the FFT. Axes must be 
            two-dimensional. If not specified, the last two axes are used by default.       
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`. 
    
    Returns:
        Real tensor. The real result of the 2-D Hermitian complex real FFT.
    
    Raises:
        ValueError: if `s` not be a sequence of 2 integers or None.
        ValueError: if `axes` not be a sequence of 2 integers or None.
        ValueError: If the input dimension is smaller than 2.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = (np.array([[3,2,3],[2, 2, 3]]) + 1j * np.array([[3,2,3],[2, 2, 3]])).astype(np.complex128)
            xp = paddle.to_tensor(x)
            hfft2_xp = paddle.fft.hfft2(xp).numpy()
            print(hfft2_xp)
            #  [[19.  7.  3. -9.]
            #   [ 1.  1.  1.  1.]]


    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".
                format(s))
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".
                format(axes))
    return hfftn(x, s, axes, norm, name)


def ihfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the two dimensional inverse FFT of a real spectrum.

    This is really `ihfftn` with different defaults.
    For more details see `ihfftn`.

    Args:
        x(Tensor): Input tensor
        s(Sequence[int], optional): Shape of the real input to the inverse FFT.
        axes(Sequance[int], optional): The axes over which to compute the 
            inverse fft. Default is the last two axes.
        norm(str, optional): {"backward", "ortho", "forward"}. Default is 
        "backward".
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns:
        out(Tensor) : The result of the inverse hermitian 2-D FFT.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:5, :5][0].astype(np.float64)
            xp = paddle.to_tensor(x)
            ihfft2_xp = paddle.fft.ihfft2(xp).numpy()
            print(ihfft2_xp)
            # [[ 2. +0.j          0. +0.j          0. +0.j        ]
            #  [-0.5-0.68819096j  0. +0.j          0. +0.j        ]
            #  [-0.5-0.16245985j  0. +0.j          0. +0.j        ]
            #  [-0.5+0.16245985j  0. +0.j          0. +0.j        ]
            #  [-0.5+0.68819096j  0. +0.j          0. +0.j        ]]
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".
                format(s))
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".
                format(axes))
    return ihfftn(x, s, axes, norm, name)


# public APIs utilities
def fftfreq(n, d=1.0, dtype=None, name=None):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given input length `n` and a sample spacing `d`::

      f = [0, 1, ...,   n/2-1,     -n/2, ..., -1] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n)   if n is odd

    Args:
        n (int): Dimension inputed.
        d (scalar, optional): Sample spacing (inverse of the sampling rate). Defaults is 1.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. A tensor of length 'n' containing the sampling frequency.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            scalar_temp = 0.5
            n = x.size
            fftfreq_xp = paddle.fft.fftfreq(n, d=scalar_temp)
            print(fftfreq_xp)

            #  Tensor(shape=[5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #           [ 0.        ,  0.40000001,  0.80000001, -0.80000001, -0.40000001])
    """

    dtype = paddle.framework.get_default_dtype()
    val = 1.0 / (n * d)
    pos_max = (n + 1) // 2
    neg_max = n // 2
    indices = paddle.arange(-neg_max, pos_max, dtype=dtype, name=name)
    indices = paddle.roll(indices, -neg_max, name=name)
    return indices * val


def rfftfreq(n, d=1.0, dtype=None, name=None):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned floating-point array "F" contains the center of the frequency unit, 
    and the unit is the number of cycles of the sampling interval (the starting point is zero). 

    Given input length `n` and a sample spacing `d`::

      f = [0, 1, ...,     n/2-1,     n/2] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n)   if n is odd

    the Nyquist frequency component is considered to be positive.

    Args:
        n (int): Dimension inputed.
        d (scalar, optional): Sample spacing (inverse of the sampling rate). Defaults is 1.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. A tensor of length ``n//2 + 1`` containing the sample frequencies.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            scalar_temp = 0.3
            n = x.size
            rfftfreq_xp = paddle.fft.rfftfreq(n, d=scalar_temp)
            print(rfftfreq_xp)

            #  Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #           [0.        , 0.66666669, 1.33333337])

    """

    dtype = paddle.framework.get_default_dtype()
    val = 1.0 / (n * d)
    pos_max = 1 + n // 2
    indices = paddle.arange(0, pos_max, dtype=dtype, name=name)
    return indices * val


def fftshift(x, axes=None, name=None):
    """
    Shift the zero-frequency component to the center of the spectrum.

    This function swaps half spaces for all the axes listed (all by default).
    Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.

    Args:
        n (int): Dimension inputed.
        axes (int|tuple, optional): The axis on which to move. The default is none, which moves all axes.
            Default is None.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. The shifted tensor.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            n = x.size
            fftfreq_xp = paddle.fft.fftfreq(n, d=0.3)
            res = paddle.fft.fftshift(fftfreq_xp).numpy()
            print(res)
            #  [-1.3333334 -0.6666667  0.         0.6666667  1.3333334]

    """
    shape = paddle.shape(x)
    if axes is None:
        # shift all axes
1303 1304 1305
        rank = len(x.shape)
        axes = list(range(0, rank))
        shifts = shape // 2
1306 1307 1308
    elif isinstance(axes, int):
        shifts = shape[axes] // 2
    else:
1309
        shifts = paddle.concat([shape[ax] // 2 for ax in axes])
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    return paddle.roll(x, shifts, axes, name=name)


def ifftshift(x, axes=None, name=None):
    """
    The inverse of `fftshift`. Although the even length 'x' is the same, the function of the 
    odd length 'x' is different. An example.

    Args:
        n (int): Dimension inputed.
        axes (int|tuple, optional): The axis on which to move. The default is none, which moves all axes.
            Default is None.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. The shifted tensor.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            n = x.size
            fftfreq_xp = paddle.fft.fftfreq(n, d=0.3)
            res = paddle.fft.ifftshift(fftfreq_xp).numpy()
            print(res)
            #  [ 1.3333334 -1.3333334 -0.6666667  0.         0.6666667]

    """
    shape = paddle.shape(x)
    if axes is None:
        # shift all axes
1346 1347
        rank = len(x.shape)
        axes = list(range(0, rank))
1348
        shifts = -shape // 2
1349 1350 1351
    elif isinstance(axes, int):
        shifts = -shape[axes] // 2
    else:
1352
        shifts = paddle.concat([-shape[ax] // 2 for ax in axes])
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    return paddle.roll(x, shifts, axes, name=name)


# internal functions
def fft_c2c(x, n, axis, norm, forward, name):
    if is_interger(x):
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)

    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2c'

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)
    if in_dygraph_mode():
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
        inputs = {'X': [x], }
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
    return out


def fft_r2c(x, n, axis, norm, forward, onesided, name):
    if is_interger(x):
        x = paddle.cast(x, paddle.get_default_dtype())
    _check_normalization(norm)
    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_r2c'
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], op_type)

    if in_dygraph_mode():
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward,
                 'onesided', onesided)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
        inputs = {'X': [x], }
        attrs = {
            'axes': axes,
            'normalization': norm,
            'forward': forward,
            'onesided': onesided,
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
            _real_to_complex_dtype(dtype))
        outputs = {"Out": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
    return out


def fft_c2r(x, n, axis, norm, forward, name):
    if is_interger(x):
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n // 2 + 1]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2r'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

    if in_dygraph_mode():
        if n is not None:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward,
                     'last_dim_size', n)
        else:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
        inputs = {'X': [x], }
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        if n is not None:
            attrs['last_dim_size'] = n
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
            _complex_to_real_dtype(dtype))
        outputs = {"Out": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
    return out


def fftn_c2c(x, s, axes, norm, forward, name):
    if is_interger(x):
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes).tolist()
        axes = [axes[i] for i in axes_argsoft]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
                    "Length of s ({}) and length of axes ({}) does not match.".
                    format(len(s), len(axes)))
            s = [s[i] for i in axes_argsoft]

    if s is not None:
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2c'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

    if in_dygraph_mode():
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
        inputs = {'X': [x], }
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
    return out


def fftn_r2c(x, s, axes, norm, forward, onesided, name):
    if is_interger(x):
        x = paddle.cast(x, paddle.get_default_dtype())
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes[:-1]).tolist()
        axes = [axes[i] for i in axes_argsoft] + [axes[-1]]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
                    "Length of s ({}) and length of axes ({}) does not match.".
                    format(len(s), len(axes)))
            s = [s[i] for i in axes_argsoft] + [s[-1]]

    if s is not None:
        x = _resize_fft_input(x, s, axes)

    op_type = 'fft_r2c'
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], op_type)

    if in_dygraph_mode():
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward,
                 'onesided', onesided)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
        inputs = {'X': [x], }
        attrs = {
            'axes': axes,
            'normalization': norm,
            'forward': forward,
            'onesided': onesided,
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
            _real_to_complex_dtype(dtype))
        outputs = {"Out": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)

    return out


def fftn_c2r(x, s, axes, norm, forward, name):
    if is_interger(x):
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes[:-1]).tolist()
        axes = [axes[i] for i in axes_argsoft] + [axes[-1]]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
                    "Length of s ({}) and length of axes ({}) does not match.".
                    format(len(s), len(axes)))
            s = [s[i] for i in axes_argsoft] + [s[-1]]

    if s is not None:
        fft_input_shape = list(s)
        fft_input_shape[-1] = fft_input_shape[-1] // 2 + 1
        x = _resize_fft_input(x, fft_input_shape, axes)

    op_type = 'fft_c2r'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

    if in_dygraph_mode():
        if s:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward,
                     'last_dim_size', s[-1])
        else:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
        inputs = {'X': [x], }
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        if s:
            attrs["last_dim_size"] = s[-1]
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
            _complex_to_real_dtype(dtype))
        outputs = {"Out": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
    return out