mnist.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import gzip
import struct
import numpy as np

from paddle.io import Dataset
23
from paddle.dataset.common import _check_exists_and_download
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

__all__ = ["MNIST"]

URL_PREFIX = 'https://dataset.bj.bcebos.com/mnist/'
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'


class MNIST(Dataset):
    """
K
Kaipeng Deng 已提交
40
    Implementation of `MNIST <http://yann.lecun.com/exdb/mnist/>`_ dataset
41 42 43 44 45 46 47

    Args:
        image_path(str): path to image file, can be set None if
            :attr:`download` is True. Default None
        label_path(str): path to label file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train' or 'test' mode. Default 'train'.
K
Kaipeng Deng 已提交
48 49
        download(bool): whether to download dataset automatically if
            :attr:`image_path` :attr:`label_path` is not set. Default True
50 51 52 53 54 55 56 57

    Returns:
        Dataset: MNIST Dataset.

    Examples:
        
        .. code-block:: python

58
            from paddle.vision.datasets import MNIST
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

            mnist = MNIST(mode='test')

            for i in range(len(mnist)):
                sample = mnist[i]
                print(sample[0].shape, sample[1])

    """

    def __init__(self,
                 image_path=None,
                 label_path=None,
                 mode='train',
                 transform=None,
                 download=True):
        assert mode.lower() in ['train', 'test'], \
                "mode should be 'train' or 'test', but got {}".format(mode)
        self.mode = mode.lower()
        self.image_path = image_path
        if self.image_path is None:
K
Kaipeng Deng 已提交
79
            assert download, "image_path is not set and downloading automatically is disabled"
80 81 82 83 84 85 86
            image_url = TRAIN_IMAGE_URL if mode == 'train' else TEST_IMAGE_URL
            image_md5 = TRAIN_IMAGE_MD5 if mode == 'train' else TEST_IMAGE_MD5
            self.image_path = _check_exists_and_download(
                image_path, image_url, image_md5, 'mnist', download)

        self.label_path = label_path
        if self.label_path is None:
K
Kaipeng Deng 已提交
87 88 89
            assert download, "label_path is not set and downloading automatically is disabled"
            label_url = TRAIN_LABEL_URL if self.mode == 'train' else TEST_LABEL_URL
            label_md5 = TRAIN_LABEL_MD5 if self.mode == 'train' else TEST_LABEL_MD5
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
            self.label_path = _check_exists_and_download(
                label_path, label_url, label_md5, 'mnist', download)

        self.transform = transform

        # read dataset into memory
        self._parse_dataset()

    def _parse_dataset(self, buffer_size=100):
        self.images = []
        self.labels = []
        with gzip.GzipFile(self.image_path, 'rb') as image_file:
            img_buf = image_file.read()
            with gzip.GzipFile(self.label_path, 'rb') as label_file:
                lab_buf = label_file.read()

                step_label = 0
                offset_img = 0
                # read from Big-endian
                # get file info from magic byte
                # image file : 16B
                magic_byte_img = '>IIII'
                magic_img, image_num, rows, cols = struct.unpack_from(
                    magic_byte_img, img_buf, offset_img)
                offset_img += struct.calcsize(magic_byte_img)

                offset_lab = 0
                # label file : 8B
                magic_byte_lab = '>II'
                magic_lab, label_num = struct.unpack_from(magic_byte_lab,
                                                          lab_buf, offset_lab)
                offset_lab += struct.calcsize(magic_byte_lab)

                while True:
                    if step_label >= label_num:
                        break
                    fmt_label = '>' + str(buffer_size) + 'B'
                    labels = struct.unpack_from(fmt_label, lab_buf, offset_lab)
                    offset_lab += struct.calcsize(fmt_label)
                    step_label += buffer_size

                    fmt_images = '>' + str(buffer_size * rows * cols) + 'B'
                    images_temp = struct.unpack_from(fmt_images, img_buf,
                                                     offset_img)
                    images = np.reshape(images_temp, (buffer_size, rows *
                                                      cols)).astype('float32')
                    offset_img += struct.calcsize(fmt_images)

                    for i in range(buffer_size):
                        self.images.append(images[i, :])
                        self.labels.append(
                            np.array([labels[i]]).astype('int64'))

    def __getitem__(self, idx):
        image, label = self.images[idx], self.labels[idx]
145
        image = np.reshape(image, [1, 28, 28])
146 147 148 149 150 151
        if self.transform is not None:
            image = self.transform(image)
        return image, label

    def __len__(self):
        return len(self.labels)