iou_similarity_op_mlu.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/detection/iou_similarity_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct IouFunction {
 public:
  explicit IouFunction(const framework::ExecutionContext& ctx) : ctx(ctx) {
    place = ctx.GetPlace();
  }
  void Transpose(const Tensor* x, Tensor* y, const std::vector<int>& axis) {
    //  y should be init first
    TransposeFromMLUTensor<T>(ctx, axis, x, y, false /*need_reshape_or_alloc*/);
  }
  void Add(const Tensor* x, const Tensor* y, Tensor* z) {
    //  y should be init first
    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc y_desc(*y);
    MLUCnnlTensorDesc z_desc(*z);

    MLUCnnlOpTensorDesc add_op_desc(CNNL_OP_TENSOR_ADD, ToCnnlDataType<T>(),
                                    CNNL_NOT_PROPAGATE_NAN);
    MLUCnnl::OpTensor(ctx, add_op_desc.get(), x_desc.get(), GetBasePtr(x),
                      y_desc.get(), GetBasePtr(y), z_desc.get(), GetBasePtr(z),
                      ToCnnlDataType<T>());
  }

  void Sub(const Tensor* x, const Tensor* y, Tensor* z) {
    //  y should be init first
    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc y_desc(*y);
    MLUCnnlTensorDesc z_desc(*z);

    MLUCnnlOpTensorDesc sub_op_desc(CNNL_OP_TENSOR_SUB, ToCnnlDataType<T>(),
                                    CNNL_NOT_PROPAGATE_NAN);
    MLUCnnl::OpTensor(ctx, sub_op_desc.get(), x_desc.get(), GetBasePtr(x),
                      y_desc.get(), GetBasePtr(y), z_desc.get(), GetBasePtr(z),
                      ToCnnlDataType<T>());
  }
  void Mul(const Tensor* x, const Tensor* y, Tensor* z) {
    //  z should be init first
    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc y_desc(*y);
    MLUCnnlTensorDesc z_desc(*z);

    MLUCnnlOpTensorDesc mul_op_desc(CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(),
                                    CNNL_NOT_PROPAGATE_NAN);
    MLUCnnl::OpTensor(ctx, mul_op_desc.get(), x_desc.get(), GetBasePtr(x),
                      y_desc.get(), GetBasePtr(y), z_desc.get(), GetBasePtr(z),
                      ToCnnlDataType<T>());
  }
  void DivNoNan(const Tensor* x, const Tensor* y, Tensor* z) {
    //  z should be init first
    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc y_desc(*y);
    MLUCnnlTensorDesc z_desc(*z);

    cnnlComputationPreference_t prefer = CNNL_COMPUTATION_FAST;

    MLUCnnl::DivNoNan(ctx, prefer, x_desc.get(), GetBasePtr(x), y_desc.get(),
                      GetBasePtr(y), z_desc.get(), GetBasePtr(z));
  }
  void Adds(const Tensor* x, float scalar, Tensor* y) {
    //  y should be init first
    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc y_desc(*y);
    float alpha = 1.0;
    float beta = scalar;
    MLUCnnl::Transform(ctx, &alpha, &beta, x_desc.get(), GetBasePtr(x),
                       y_desc.get(), GetBasePtr(y));
  }
  void Maximum(const Tensor* x, const Tensor* y, Tensor* z) {
    //  z should be init first
    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc y_desc(*y);
    MLUCnnlTensorDesc z_desc(*z);

    MLUCnnl::Maximum(ctx, x_desc.get(), GetBasePtr(x), y_desc.get(),
                     GetBasePtr(y), z_desc.get(), GetBasePtr(z));
  }
  void Minimum(const Tensor* x, const Tensor* y, Tensor* z) {
    //  z should be init first
    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc y_desc(*y);
    MLUCnnlTensorDesc z_desc(*z);

    MLUCnnl::Minimum(ctx, x_desc.get(), GetBasePtr(x), y_desc.get(),
                     GetBasePtr(y), z_desc.get(), GetBasePtr(z));
  }

 private:
  platform::Place place;
  const framework::ExecutionContext& ctx;
};

template <typename T>
class IouSimilarityMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    bool normalized = ctx.Attr<bool>("box_normalized");
    auto* out = ctx.Output<framework::LoDTensor>("Out");

    auto _type = x->dtype();
    auto place = ctx.GetPlace();

    IouFunction<T> F(ctx);

    auto N = x->dims()[0];
    auto M = y->dims()[0];

    out->mutable_data<T>({N, M}, place);
    Tensor xt(_type);
    Tensor yt(_type);
    xt.mutable_data<T>({4, N}, place);
    yt.mutable_data<T>({4, M}, place);
    std::vector<int> vec_trans = {1, 0};
    F.Transpose(x, &xt, vec_trans);
    F.Transpose(y, &yt, vec_trans);
    Tensor xmin1 = xt.Slice(0, 1);
    Tensor ymin1 = xt.Slice(1, 2);
    Tensor xmax1 = xt.Slice(2, 3);
    Tensor ymax1 = xt.Slice(3, 4);
    Tensor xmin2 = yt.Slice(0, 1);
    Tensor ymin2 = yt.Slice(1, 2);
    Tensor xmax2 = yt.Slice(2, 3);
    Tensor ymax2 = yt.Slice(3, 4);
    xmin1.Resize({N, 1});
    ymin1.Resize({N, 1});
    xmax1.Resize({N, 1});
    ymax1.Resize({N, 1});
    xmin2.Resize({1, M});
    ymin2.Resize({1, M});
    xmax2.Resize({1, M});
    ymax2.Resize({1, M});

    Tensor w1(_type);
    Tensor h1(_type);
    Tensor w2(_type);
    Tensor h2(_type);
    Tensor area1(_type);
    Tensor area2(_type);
    w1.mutable_data<T>({N, 1}, place);
    h1.mutable_data<T>({N, 1}, place);
    w2.mutable_data<T>({1, M}, place);
    h2.mutable_data<T>({1, M}, place);
    area1.mutable_data<T>({N, 1}, place);
    area2.mutable_data<T>({1, M}, place);
    F.Sub(&xmax1, &xmin1, &w1);
    F.Sub(&ymax1, &ymin1, &h1);
    F.Sub(&xmax2, &xmin2, &w2);
    F.Sub(&ymax2, &ymin2, &h2);
    if (!normalized) {
      F.Adds(&w1, 1.0f, &w1);
      F.Adds(&h1, 1.0f, &h1);
      F.Adds(&w2, 1.0f, &w2);
      F.Adds(&h2, 1.0f, &h2);
    }
    F.Mul(&w1, &h1, &area1);
    F.Mul(&w2, &h2, &area2);

    Tensor inter_xmax(_type);
    Tensor inter_ymax(_type);
    Tensor inter_xmin(_type);
    Tensor inter_ymin(_type);
    inter_xmax.mutable_data<T>({N, M}, place);
    inter_ymax.mutable_data<T>({N, M}, place);
    inter_xmin.mutable_data<T>({N, M}, place);
    inter_ymin.mutable_data<T>({N, M}, place);
    F.Minimum(&xmax1, &xmax2, &inter_xmax);
    F.Minimum(&ymax1, &ymax2, &inter_ymax);
    F.Maximum(&xmin1, &xmin2, &inter_xmin);
    F.Maximum(&ymin1, &ymin2, &inter_ymin);

    Tensor inter_w(_type);
    Tensor inter_h(_type);
    inter_w.mutable_data<T>({N, M}, place);
    inter_h.mutable_data<T>({N, M}, place);
    F.Sub(&inter_xmax, &inter_xmin, &inter_w);
    F.Sub(&inter_ymax, &inter_ymin, &inter_h);

    if (!normalized) {
      F.Adds(&inter_w, 1.0f, &inter_w);
      F.Adds(&inter_h, 1.0f, &inter_h);
    }
    Tensor zeros(_type);
    zeros.mutable_data<T>({1}, place);
    FillMLUTensorWithHostValue<T>(ctx, static_cast<T>(0), &zeros);
    F.Maximum(&inter_w, &zeros, &inter_w);
    F.Maximum(&inter_h, &zeros, &inter_h);

    F.Mul(&inter_w, &inter_h, out);
    Tensor union_area(_type);
    union_area.mutable_data<T>({N, M}, place);
    F.Add(&area1, &area2, &union_area);
    F.Sub(&union_area, out, &union_area);
    F.DivNoNan(out, &union_area, out);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_MLU_KERNEL(iou_similarity, ops::IouSimilarityMLUKernel<float>,
                       ops::IouSimilarityMLUKernel<plat::float16>);