multi_gru_op.cc 8.4 KB
Newer Older
W
Wojciech Uss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fused/multi_gru_op.h"
// #include "paddle/fluid/operators/fused/fusion_gru_op.h"
#include <cstring>  // for memcpy
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/fc.h"
22
#include "paddle/phi/kernels/funcs/blas/blas.h"
F
Feiyu Chan 已提交
23
#include "paddle/phi/kernels/funcs/sequence2batch.h"
W
Wojciech Uss 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

namespace paddle {
namespace operators {

void MultiGRUOp::InferShape(framework::InferShapeContext* ctx) const {
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "multi_gru");
  OP_INOUT_CHECK(ctx->HasInputs("WeightX"), "Input", "WeightX", "multi_gru");
  OP_INOUT_CHECK(ctx->HasInputs("WeightH"), "Input", "WeightH", "multi_gru");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "multi_gru");
  auto x_dims = ctx->GetInputDim("X");
  auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1)
38
                        ? phi::flatten_to_2d(x_dims, 1)
W
Wojciech Uss 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
                        : x_dims;
  PADDLE_ENFORCE_EQ(
      x_mat_dims.size(), 2,
      platform::errors::InvalidArgument("The size of input X dims should be 2, "
                                        "or 3 with second dimension equal to "
                                        "1, but now Input X dim is:[%s] ",
                                        x_dims));

  auto layers = ctx->Attrs().Get<int>("layers");
  auto wx_dims = ctx->GetInputsDim("WeightX");
  for (int i : {0, 1}) {
    PADDLE_ENFORCE_EQ(
        wx_dims[i][0], x_mat_dims[1],
        platform::errors::InvalidArgument(
            "The first dimension of flattened WeightX #%d"
            "should equal to last dimension of flattened input X, but "
            "received fattened WeightX dimension is:%d, flattened X dimension "
            "is:%d",
            i, wx_dims[i][0], x_mat_dims[1]));
  }

  auto wh_dims = ctx->GetInputsDim("WeightH");
  for (int i = 0; i < 2 * layers; ++i) {
    PADDLE_ENFORCE_EQ(wx_dims[i].size(), 2,
                      platform::errors::InvalidArgument(
                          "The rank of WeightX #%d should be 2, but received "
                          "WeightX dim size is:%d, WeightX dim is:[%s] ",
                          i, wx_dims[i].size(), wx_dims[i]));
    PADDLE_ENFORCE_EQ(wh_dims[i].size(), 2,
                      platform::errors::InvalidArgument(
                          "The rank of WeightH #%d should be 2, but received "
                          "WeightH dim size is:%d, WeightH dim is:[%s] ",
                          i, wh_dims[i].size(), wh_dims[i]));
    int frame_size = wh_dims[i][0];
    PADDLE_ENFORCE_EQ(
        wh_dims[i][1], 3 * frame_size,
        platform::errors::InvalidArgument(
            "The second dimension of WeightH #%d "
            "should equal to 3 * frame_size, but received WeightH's "
            "second dimension is: %d, frame size is:%d",
            i, wh_dims[1], frame_size));
    PADDLE_ENFORCE_EQ(
        wx_dims[i][1], 3 * frame_size,
        platform::errors::InvalidArgument(
            "The second dimension of WeightX #%d "
            "should equal to 3 * frame_size, but received WeightX's "
            "second dimension is: %d, frame size is:%d",
            i, wx_dims[i][1], frame_size));
  }

  if (ctx->HasInputs("Bias")) {
    auto b_dims = ctx->GetInputsDim("Bias");
    for (int i = 0; i < 2 * layers; ++i) {
      int frame_size = wh_dims[i][0];
      PADDLE_ENFORCE_EQ(b_dims[i].size(), 2,
                        platform::errors::InvalidArgument(
                            "The rank of Bias #%d should be 2, but received "
                            "Bias rank is:%d, Bias dim is:[%s]",
                            i, b_dims[i].size(), b_dims[i]));
      PADDLE_ENFORCE_EQ(b_dims[i][0], 1,
                        platform::errors::InvalidArgument(
                            "The first dimension of Bias #%d should be 1, but "
                            "received Bias first dim is:%d, Bias dim is:[%s]",
                            i, b_dims[i][0], b_dims[i]));
      PADDLE_ENFORCE_EQ(
          b_dims[i][1], frame_size * 3,
          platform::errors::InvalidArgument(
              "The shape of Bias #%d must be [1, frame_size * 3], but "
              "received bias dim is:[%s], frame size is:%d",
              i, b_dims[i], frame_size));
    }
  }

  int last_frame_size = wh_dims.back()[0];
  framework::DDim out_dims({x_mat_dims[0], 2 * last_frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
}

framework::OpKernelType MultiGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  framework::LibraryType library = framework::LibraryType::kMKLDNN;
  framework::DataLayout layout = framework::DataLayout::kMKLDNN;

  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(), layout,
      library);
}

void MultiGRUOpMaker::Make() {
  AddInput("X",
           "(LoDTensor) the input is an LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(MultiTensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ")
      .AsDuplicable();
  AddInput("WeightH",
           "(MultiTensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}")
      .AsDuplicable();
  AddInput("Bias",
           "(MultiTensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
      .AsDuplicable()
      .AsDispensable();
  AddInput(
      "Scale_weights",
      "(MultiTensor, optional) Scale_weights to be used for int8 weights data."
      "Only used with MKL-DNN INT8.")
      .AsDuplicable()
      .AsDispensable();
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<int>("layers",
               "(int, default: 1) "
               "Number of stacked GRU layers.")
      .SetDefault(1);
  AddAttr<bool>("origin_mode",
                "bool"
                "use origin mode in article https://arxiv.org/abs/1412.3555")
      .SetDefault(false);
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
  AddAttr<float>("Scale_data",
                 "Scales to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault({1.f});
  AddAttr<float>("Shift_data",
                 "Shifts to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault({0.f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default: false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(multi_gru, ops::MultiGRUOp, ops::MultiGRUOpMaker);