qr_grad_kernel_impl.h 6.3 KB
Newer Older
Y
Yulong Ao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/kernels/complex_kernel.h"
#include "paddle/phi/kernels/concat_kernel.h"
#include "paddle/phi/kernels/elementwise_add_kernel.h"
#include "paddle/phi/kernels/elementwise_subtract_kernel.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/parse_qr_mode.h"
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/slice_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
#include "paddle/phi/kernels/triangular_solve_kernel.h"
32
#include "paddle/phi/kernels/tril_triu_kernel.h"
Y
Yulong Ao 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

namespace phi {

template <class T, class Context>
static DenseTensor Fill(const Context& ctx,
                        std::vector<int> shape,
                        float fill_value) {
  DenseTensor ret;
  ret.Resize(make_ddim(shape));
  ctx.template Alloc<T>(&ret);
  funcs::SetConstant<Context, T>()(ctx, &ret, T(fill_value));
  return ret;
}

template <typename T, typename Context>
void QrGradKernel(const Context& ctx,
                  const DenseTensor& x,
                  const DenseTensor& q,
                  const DenseTensor& r,
                  const DenseTensor& q_grad,
                  const DenseTensor& r_grad,
                  const std::string& mode,
                  DenseTensor* x_grad) {
  // Using alias names
  const DenseTensor& A = x;
  const DenseTensor& Q = q;
  const DenseTensor& R = r;
  const DenseTensor& dQ = q_grad;
  const DenseTensor& dR = r_grad;
  DenseTensor& dA = *x_grad;

  ctx.template Alloc<phi::dtype::Real<T>>(&dA);
  phi::funcs::SetConstant<Context, T>()(ctx, &dA, T(0));

  bool compute_q, reduced;
  std::tie(compute_q, reduced) = phi::funcs::ParseQrMode(mode);
  if (!compute_q) {
    PADDLE_THROW(errors::InvalidArgument(
        "The derivative of qr is not implemented when mode='%s'.", mode));
  }

  auto a_dims = A.dims();
  int a_rank = a_dims.size();
  int m = a_dims[a_rank - 2];
  int n = a_dims[a_rank - 1];

  if ((m > n) && (!reduced)) {
    PADDLE_THROW(errors::InvalidArgument(
        "The derivative of qr is not implemented when mode='complete' and "
        "%d > %d.",
        m,
        n));
  }

  // m >= n case
  auto m_gt_n_case = [](const Context& ctx,
                        const DenseTensor& dQ,
                        const DenseTensor& dR,
                        const DenseTensor& A,
                        const DenseTensor& Q,
                        const DenseTensor& R) -> DenseTensor {
    // Hai-Jun Liao, Jin-Guo Liu, Lei Wang, Tao Xiang (2019). Differentiable
    // Programming Tensor Networks.
    // https://arxiv.org/abs/1903.09650 Section 3. QR factorization

    // dR^H
    DenseTensor R_term;
    if (dR.initialized()) {
      R_term =
          Matmul<T, Context>(ctx, R, TransposeLast2Dim<T, Context>(ctx, dR));
    } else {
      R_term = Fill<T, Context>(ctx, phi::vectorize<int>(R.dims()), 0);
    }

    // dQ^H * Q
    DenseTensor Q_term;
    if (dQ.initialized()) {
      Q_term =
          Matmul<T, Context>(ctx, TransposeLast2Dim<T, Context>(ctx, dQ), Q);
    } else {
      Q_term = Fill<T, Context>(ctx, phi::vectorize<int>(R.dims()), 0);
    }

    DenseTensor M_tmp1 = Subtract<T, Context>(ctx, R_term, Q_term);

    // Compute M = (tril(M) + tril(M).mH()) * 0.5 Identity
119 120
    DenseTensor M_tril_0 = TrilTriu<T, Context>(ctx, M_tmp1, 0, true);
    DenseTensor M_tril_1 = TrilTriu<T, Context>(ctx, M_tmp1, -1, true);
Y
Yulong Ao 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    DenseTensor M = Add<T, Context>(
        ctx, M_tril_0, TransposeLast2Dim<T, Context>(ctx, M_tril_1));

    DenseTensor rhs_term;
    if (dQ.initialized()) {
      rhs_term = Add<T, Context>(ctx, dQ, Matmul<T, Context>(ctx, Q, M));
    } else {
      rhs_term = Matmul<T, Context>(ctx, Q, M);
    }

    // dA * R^H = rhs_term
    auto dA = TriangularSolve<T, Context>(
        ctx,
        TransposeLast2Dim<T, Context>(
            ctx, Conj<T, Context>(ctx, TransposeLast2Dim<T, Context>(ctx, R))),
        TransposeLast2Dim<T, Context>(ctx, rhs_term),
        /*upper=*/true,
        /*transpose=*/false,
        /*unitriangular=*/false);

    return TransposeLast2Dim<T, Context>(ctx, dA);
  };

  if (m >= n) {
    auto dA_tmp = m_gt_n_case(ctx, dQ, dR, A, Q, R);
    phi::Copy(ctx, dA_tmp, dA.place(), false, &dA);
  } else {
    // If m < n for input matrices A, we partition A = [X|Y] and R = [U|V]
    // Calculate dX and dY individually and concatenate them to get dA
    ctx.template Alloc<phi::dtype::Real<T>>(&dA);

    auto Y = SliceKernel<T, Context>(
        ctx, A, {A.dims().size() - 1}, {m}, {n}, {1}, {});
    auto U = SliceKernel<T, Context>(
        ctx, R, {R.dims().size() - 1}, {0}, {m}, {1}, {});
    DenseTensor dY, dX, dV, dR_tmp, dQ_prime;

    if (dR.initialized()) {
      dV = SliceKernel<T, Context>(
          ctx, dR, {dR.dims().size() - 1}, {m}, {n}, {1}, {});
      dR_tmp = SliceKernel<T, Context>(
          ctx, dR, {dR.dims().size() - 1}, {0}, {m}, {1}, {});
      // Y * dV^H
      dQ_prime =
          Matmul<T, Context>(ctx, Y, TransposeLast2Dim<T, Context>(ctx, dV));
    } else {
      dV = Fill<T, Context>(ctx, phi::vectorize<int>(Y.dims()), 0);
      dQ_prime = Fill<T, Context>(ctx, phi::vectorize<int>(Q.dims()), 0);
    }

    if (dQ.initialized()) {
      dQ_prime = Add<T, Context>(ctx, dQ_prime, dQ);
    }
    dX = m_gt_n_case(ctx, dQ_prime, dR_tmp, A, Q, U);
    dY = Matmul<T, Context>(ctx, Q, dV);
    // Concatenate dX and dY to get dA.
    auto dA_tmp = Concat<T, Context>(ctx, {&dX, &dY}, -1);
    phi::Copy(ctx, dA_tmp, dA.place(), false, &dA);
  }
}

}  // namespace phi