lstsq_kernel.cu 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef PADDLE_WITH_HIP  // HIP not support cusolver

#include <math.h>
#include <algorithm>
#include <complex>

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/slice.h"
#include "paddle/phi/kernels/impl/lstsq_kernel_impl.h"
#include "paddle/phi/kernels/impl/qr_kernel_impl.h"
26
#include "paddle/phi/kernels/impl/tril_triu_kernel_impl.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#include "paddle/phi/kernels/lstsq_kernel.h"
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
#include "paddle/phi/kernels/triangular_solve_kernel.h"

namespace phi {

enum class LapackDriverType : int { Gels, Gelsd, Gelsy, Gelss };

template <typename T, typename Context>
void LstsqKernel(const Context& dev_ctx,
                 const DenseTensor& x,
                 const DenseTensor& y,
                 const Scalar& rcond_scalar,
                 const std::string& driver_string,
                 DenseTensor* solution,
                 DenseTensor* residuals,
                 DenseTensor* rank,
                 DenseTensor* singular_values) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  int dim_size = x_dims.size();
  int m = x_dims[dim_size - 2];
  int n = x_dims[dim_size - 1];
  int nrhs = y_dims[dim_size - 1];
  int min_mn = std::min(m, n);
  int max_mn = std::max(m, n);
  int k = min_mn;

  int x_stride = phi::GetMatrixStride(x_dims);
  int y_stride = phi::GetMatrixStride(y_dims);
  int tau_stride = min_mn;
  int batch_count = phi::GetBatchCount(x_dims);

  T rcond = rcond_scalar.to<T>();

  DenseTensor* new_x = new DenseTensor();
  new_x->Resize(phi::make_ddim({batch_count, m, n}));
  dev_ctx.template Alloc<T>(new_x);
  phi::Copy<Context>(dev_ctx, x, dev_ctx.GetPlace(), true, new_x);

  DenseTensor* new_y = new DenseTensor();
  new_y->Resize(phi::make_ddim({batch_count, m, nrhs}));
  dev_ctx.template Alloc<T>(new_y);
  phi::Copy<Context>(dev_ctx, y, dev_ctx.GetPlace(), true, new_y);

  // Prepare tau
  auto tau_dims_vec = phi::vectorize<int>(x_dims);
  tau_dims_vec.pop_back();
  tau_dims_vec[tau_dims_vec.size() - 1] = min_mn;

  DenseTensor* tau = new DenseTensor();
  tau->Resize(phi::make_ddim(tau_dims_vec));
  auto tau_data = dev_ctx.template Alloc<T>(tau);

  if (m >= n) {
    DenseTensor tmp_x = phi::TransposeLast2Dim<T>(dev_ctx, *new_x);
    DenseTensor tmp_y = phi::TransposeLast2Dim<T>(dev_ctx, *new_y);
    auto x_data = tmp_x.data<T>();
    auto y_data = tmp_y.data<T>();

    // step 1, compute QR factorization using geqrf
    BatchedGeqrf<Context, T>(
        dev_ctx, batch_count, m, n, x_data, m, tau_data, x_stride, tau_stride);

    // Step 2, Y <- Q^H Y
    BatchedOrmqr<Context, T>(dev_ctx,
                             true,
                             true,
                             batch_count,
                             m,
                             nrhs,
                             k,
                             x_data,
                             x_stride,
                             tau_data,
                             tau_stride,
                             y_data,
                             y_stride);

    DenseTensor trans_r = phi::TransposeLast2Dim<T>(dev_ctx, tmp_x);
    DenseTensor slice_r =
        phi::funcs::Slice<T>(dev_ctx, trans_r, {-2}, {0}, {min_mn});
    DenseTensor* res_r = new DenseTensor();
    res_r->Resize(phi::make_ddim({batch_count, min_mn, min_mn}));
    dev_ctx.template Alloc<T>(res_r);
113
    phi::TrilTriuKernel<T>(dev_ctx, slice_r, 0, false, res_r);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

    DenseTensor trans_y = phi::TransposeLast2Dim<T>(dev_ctx, tmp_y);
    DenseTensor slice_y =
        phi::funcs::Slice<T>(dev_ctx, trans_y, {-2}, {0}, {min_mn});

    // Step 3, solve R X = Y
    phi::TriangularSolveKernel<T, Context>(
        dev_ctx, *res_r, slice_y, true, false, false, solution);

  } else {
    auto x_data = dev_ctx.template Alloc<T>(new_x);
    auto y_data = dev_ctx.template Alloc<T>(new_y);

    // step 1, compute QR factorization using geqrf
    BatchedGeqrf<Context, T>(
        dev_ctx, batch_count, n, m, x_data, n, tau_data, x_stride, tau_stride);

    // Step 2, solve R^H Z = Y
    DenseTensor trans_r = phi::TransposeLast2Dim<T>(dev_ctx, *new_x);
    DenseTensor slice_r =
        phi::funcs::Slice<T>(dev_ctx, trans_r, {-2}, {0}, {min_mn});
    DenseTensor* res_r = new DenseTensor();
    res_r->Resize(phi::make_ddim({batch_count, min_mn, min_mn}));
    dev_ctx.template Alloc<T>(res_r);
138
    phi::TrilTriuKernel<T>(dev_ctx, slice_r, 0, false, res_r);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

    phi::TriangularSolveKernel<T, Context>(
        dev_ctx, *res_r, *new_y, true, true, false, solution);

    // Step 3, X <- Q Z
    BatchedOrgqr<Context, T>(dev_ctx,
                             batch_count,
                             n,
                             m,
                             min_mn,
                             x_data,
                             n,
                             tau_data,
                             x_stride,
                             tau_stride);

    DenseTensor trans_q = phi::TransposeLast2Dim<T>(dev_ctx, *new_x);
    DenseTensor slice_q =
        phi::funcs::Slice<T>(dev_ctx, trans_q, {-1}, {0}, {m});
    DenseTensor solu_tensor =
        phi::Matmul<T>(dev_ctx, slice_q, *solution, false, false);
    phi::Copy<Context>(
        dev_ctx, solu_tensor, dev_ctx.GetPlace(), true, solution);
  }

  if (batch_count == 1) solution->Resize(phi::make_ddim({n, nrhs}));
  GetResidualsTensor<Context, T>(dev_ctx, x, y, solution, residuals);
}

}  // namespace phi

PD_REGISTER_KERNEL(lstsq,  // cuda_only
                   GPU,
                   ALL_LAYOUT,
                   phi::LstsqKernel,
                   float,
                   double) {}

#endif  // not PADDLE_WITH_HIP