concat_op_npu.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename T>
class ConcatNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    framework::LoDTensor* out = ctx.Output<framework::LoDTensor>("Out");
    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));
    auto axis = ctx.Attr<int>("axis");

    if (ctx.HasInput("AxisTensor")) {
      PADDLE_THROW(platform::errors::NotFound(
          "The AxisTensor is not supported on NPU now."));
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));

    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);

    std::vector<framework::Tensor> inputs;
    std::vector<std::string> names;
    for (size_t i = 0; i < ins.size(); ++i) {
      if (ins[i] && ins[i]->numel() > 0) {
        inputs.push_back(*ins[i]);
        names.push_back("x" + std::to_string(i));
      } else {
        continue;
      }
    }
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    auto runner = NpuOpRunner(
        "ConcatD", {inputs}, {*out},
        {{"concat_dim", axis}, {"N", static_cast<int>(inputs.size())}});
    runner.AddInputNames(names);
    runner.Run(stream);
  }
};

template <typename T>
class ConcatGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
    auto outs =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));

    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));

    auto axis = ctx.Attr<int>("axis");

    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
L
Leo Chen 已提交
82

83
    std::vector<int> sizes;
L
Leo Chen 已提交
84 85 86 87
    int offset = 0;
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
88
    for (size_t j = 0; j < outs.size(); ++j) {
L
Leo Chen 已提交
89 90
      // For stop gradient
      // get output tensor that the name is not kEmptyVarName
91 92 93 94
      if (out_var_names[j] != framework::kEmptyVarName &&
          outs[j]->numel() != 0UL) {
        outs[j]->mutable_data<T>(ctx.GetPlace());
        sizes.push_back(outs[j]->dims()[axis]);
L
Leo Chen 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        std::vector<int> offsets;
        std::vector<int> sizes;
        for (int dim = 0; dim < ins[j]->dims().size(); ++dim) {
          if (dim == axis) {
            offsets.push_back(offset);
            sizes.push_back(ins[j]->dims()[dim]);
          } else {
            offsets.push_back(0);
            sizes.push_back(ins[j]->dims()[dim]);
          }
        }
        auto runner =
            NpuOpRunner("SliceD", {*out_grad}, {*outs[j]},
                        {{"offsets", offset}, {"size", ins[j]->dims()[axis]}});
        runner.Run(stream);
      }
      if (ins[j]->numel() != 0UL) {
        offset += ins[j]->dims()[axis];
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(concat, ops::ConcatNPUKernel<float>,
                       ops::ConcatNPUKernel<paddle::platform::float16>,
                       ops::ConcatNPUKernel<int>);

REGISTER_OP_NPU_KERNEL(concat_grad, ops::ConcatGradNPUKernel<float>,
                       ops::ConcatGradNPUKernel<paddle::platform::float16>,
                       ops::ConcatGradNPUKernel<int>);