test_pow.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import paddle
import paddle.tensor as tensor
import paddle.fluid as fluid
from paddle.static import Program, program_guard
import numpy as np
import unittest

DYNAMIC = 1
STATIC = 2


def _run_power(mode, x, y):
    # dynamic mode
    if mode == DYNAMIC:
        paddle.disable_static()
        # y is scalar
        if isinstance(y, (int, float)):
            x_ = paddle.to_tensor(x)
            y_ = y
            res = paddle.pow(x_, y_)
            return res.numpy()
        # y is tensor
        else:
            x_ = paddle.to_tensor(x)
            y_ = paddle.to_tensor(y)
            res = paddle.pow(x_, y_)
            return res.numpy()
    # static mode
    elif mode == STATIC:
        paddle.enable_static()
        # y is scalar
        if isinstance(y, (int, float)):
            with program_guard(Program(), Program()):
                x_ = paddle.static.data(name="x", shape=x.shape, dtype=x.dtype)
                y_ = y
                res = paddle.pow(x_, y_)
                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                outs = exe.run(feed={'x': x}, fetch_list=[res])
                return outs[0]
        # y is tensor
        else:
            with program_guard(Program(), Program()):
                x_ = paddle.static.data(name="x", shape=x.shape, dtype=x.dtype)
                y_ = paddle.static.data(name="y", shape=y.shape, dtype=y.dtype)
                res = paddle.pow(x_, y_)
                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                outs = exe.run(feed={'x': x, 'y': y}, fetch_list=[res])
                return outs[0]


class TestPowerAPI(unittest.TestCase):
    """TestPowerAPI."""

    def test_power(self):
        """test_power."""
        np.random.seed(7)
        # test 1-d float tensor ** float scalar
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = np.random.rand() * 10
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d float tensor ** int scalar
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = int(np.random.rand() * 10)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        x = (np.random.rand(*dims) * 10).astype(np.int64)
        y = int(np.random.rand() * 10)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d float tensor ** 1-d float tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(*dims) * 10).astype(np.float64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d float tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(*dims) * 10).astype(np.int64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d float tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.int64)
        y = (np.random.rand(*dims) * 10).astype(np.float64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.int64)
        y = (np.random.rand(*dims) * 10).astype(np.int64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.int32)
        y = (np.random.rand(*dims) * 10).astype(np.int32)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.int64)
        y = (np.random.rand(*dims) * 10).astype(np.int32)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.int32)
        y = (np.random.rand(*dims) * 10).astype(np.int64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float32)
        y = (np.random.rand(*dims) * 10).astype(np.float32)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(*dims) * 10).astype(np.float32)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(*dims) * 10).astype(np.int32)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test 1-d int tensor ** 1-d int tensor
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float32)
        y = (np.random.rand(*dims) * 10).astype(np.int64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))

        # test broadcast
        dims = (np.random.randint(1, 10), np.random.randint(5, 10),
                np.random.randint(5, 10))
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(dims[-1]) * 10).astype(np.float64)
        res = _run_power(DYNAMIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))
        res = _run_power(STATIC, x, y)
        self.assertTrue(np.allclose(res, np.power(x, y)))


class TestPowerError(unittest.TestCase):
    """TestPowerError."""

    def test_errors(self):
        """test_errors."""
        np.random.seed(7)

        # test dynamic computation graph: inputs must be broadcastable
        dims = (np.random.randint(1, 10), np.random.randint(5, 10),
                np.random.randint(5, 10))
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(dims[-1] + 1) * 10).astype(np.float64)
        self.assertRaises(fluid.core.EnforceNotMet, _run_power, DYNAMIC, x, y)
        self.assertRaises(fluid.core.EnforceNotMet, _run_power, STATIC, x, y)

        # test dynamic computation graph: inputs must be broadcastable
        dims = (np.random.randint(1, 10), np.random.randint(5, 10),
                np.random.randint(5, 10))
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = (np.random.rand(dims[-1] + 1) * 10).astype(np.int8)
        self.assertRaises(TypeError, paddle.pow, x, y)

        # test 1-d float tensor ** int string
        dims = (np.random.randint(200, 300), )
        x = (np.random.rand(*dims) * 10).astype(np.float64)
        y = int(np.random.rand() * 10)
        self.assertRaises(TypeError, paddle.pow, x, str(y))


if __name__ == '__main__':
    unittest.main()