test_quant_post_quant_aware.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np
from test_quant_aware import StaticCase

import paddle
from paddle.static.quantization.quanter import convert, quant_aware

np.random.seed(0)
random.seed(0)
paddle.seed(0)


class RandomDataset(paddle.io.Dataset):
    def __init__(self, num_samples):
        self.num_samples = num_samples

    def __getitem__(self, idx):
        enc_input = np.random.random([4, 128]).astype('float32')
        attn_mask = np.random.random([2, 4, 4]).astype('float32')
        label = np.random.randint(0, 2, (1,)).astype('int64')
        return enc_input, attn_mask, label

    def __len__(self):
        return self.num_samples


class TestQuantPostQuantAwareCase1(StaticCase):
    def test_accuracy(self):
        def simple_transformer(enc_input, attn_mask):
            encoder_layer = paddle.nn.TransformerEncoderLayer(128, 2, 512)
            encoder = paddle.nn.TransformerEncoder(encoder_layer, 2)
            encoder_output = encoder(enc_input, attn_mask)
            first_token = encoder_output[:, 0]
            bias = paddle.full(shape=[1, 128], fill_value=1e-6)
            linear = paddle.nn.Linear(128, 2)
            logits = linear(first_token + bias)
            return logits

        enc_input = paddle.static.data(
            name='enc_input', shape=[None, 4, 128], dtype='float32'
        )
        attn_mask = paddle.static.data(
            name='attn_mask', shape=[None, 2, 4, 4], dtype='float32'
        )
        label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
        out = simple_transformer(enc_input, attn_mask)
        cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label)
        avg_cost = paddle.mean(x=cost)
        acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
        optimizer = paddle.optimizer.Momentum(
            momentum=0.9,
            learning_rate=0.01,
            weight_decay=paddle.regularizer.L2Decay(4e-5),
        )
        optimizer.minimize(avg_cost)
        main_prog = paddle.static.default_main_program()
        val_prog = main_prog.clone(for_test=True)

        place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
        exe = paddle.static.Executor(place)
        exe.run(paddle.static.default_startup_program())

        train_dataset = RandomDataset(100)
        test_dataset = RandomDataset(50)
        train_loader = paddle.io.DataLoader(
            train_dataset,
            places=place,
            feed_list=[enc_input, attn_mask, label],
            drop_last=True,
            return_list=False,
            batch_size=10,
        )
        valid_loader = paddle.io.DataLoader(
            test_dataset,
            places=place,
            feed_list=[enc_input, attn_mask, label],
            batch_size=10,
            return_list=False,
        )

        def train(program):
            iter = 0
            for data in train_loader():
                cost, top1 = exe.run(
                    program, feed=data, fetch_list=[avg_cost, acc_top1]
                )
                iter += 1
                if iter % 100 == 0:
                    print(
                        'train iter={}, avg loss {}, acc_top1 {}'.format(
                            iter, cost, top1
                        )
                    )

        def test(program):
            iter = 0
            result = [[], []]
            for data in valid_loader():
                cost, top1 = exe.run(
                    program, feed=data, fetch_list=[avg_cost, acc_top1]
                )
                iter += 1
                if iter % 100 == 0:
                    print(
                        'eval iter={}, avg loss {}, acc_top1 {}'.format(
                            iter, cost, top1
                        )
                    )
                result[0].append(cost)
                result[1].append(top1)
            print(
                ' avg loss {}, acc_top1 {}'.format(
                    np.mean(result[0]), np.mean(result[1])
                )
            )
            return np.mean(result[1])

        train(main_prog)
        top1_1 = test(main_prog)

        config = {
            'weight_quantize_type': 'channel_wise_abs_max',
            'activation_quantize_type': 'moving_average_abs_max',
            'quantize_op_types': [
                'conv2d',
                'depthwise_conv2d',
                'mul',
                'matmul',
                'elementwise_add',
            ],
            'quant_post_first': True,
            'scale_trainable': True,
        }
        calib_config = {
            'data_loader': valid_loader,
            'algo': 'abs_max',
            'feed_list': ['enc_input', 'attn_mask', 'label'],
            'fetch_list': [avg_cost, acc_top1],
        }
        quant_eval_prog, scale_dict, _, _ = quant_aware(
            val_prog,
            place,
            config,
            for_test=True,
            calib_config=calib_config,
            model_type='transformer',
            return_scale_dict=True,
        )
        quant_train_prog = quant_aware(
            main_prog,
            place,
            config,
            for_test=False,
            calib_config=calib_config,
            return_program=True,
            scale_dict=scale_dict,
            model_type='transformer',
        )
        train(quant_train_prog)
        quant_eval_prog = convert(quant_eval_prog, place, config)
        top1_2 = test(quant_eval_prog)
        # values before quantization and after quantization should be close
        print(f"before quantization: top1: {top1_1}")
        print(f"after quantization: top1: {top1_2}")


if __name__ == '__main__':
    unittest.main()