test_quant_aware_config.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
# Copyright (c) 2023  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest

import numpy as np
from test_quant_aware import MobileNet

import paddle
from paddle.static.quantization.quanter import convert, quant_aware


class TestQuantAwareBase(unittest.TestCase):
    def setUp(self):
        paddle.enable_static()

    def get_save_int8(self):
        return False

    def generate_config(self):
        config = {
            'weight_quantize_type': 'channel_wise_abs_max',
            'activation_quantize_type': 'moving_average_abs_max',
            'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
            'onnx_format': False,
        }
        return config

    def test_accuracy(self):
        main_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog):
            image = paddle.static.data(
                name='image', shape=[None, 1, 28, 28], dtype='float32'
            )
            label = paddle.static.data(
                name='label', shape=[None, 1], dtype='int64'
            )
            model = MobileNet()
            out = model.net(input=image, class_dim=10)
            cost = paddle.nn.functional.loss.cross_entropy(
                input=out, label=label
            )
            avg_cost = paddle.mean(x=cost)
            acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
            acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
            optimizer = paddle.optimizer.Momentum(
                momentum=0.9,
                learning_rate=0.01,
                weight_decay=paddle.regularizer.L2Decay(4e-5),
            )
            optimizer.minimize(avg_cost)
        val_prog = main_prog.clone(for_test=True)

        place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
        exe = paddle.static.Executor(place)
        exe.run(paddle.static.default_startup_program())

        def transform(x):
            return np.reshape(x, [1, 28, 28])

        train_dataset = paddle.vision.datasets.MNIST(
            mode='train', backend='cv2', transform=transform
        )
        test_dataset = paddle.vision.datasets.MNIST(
            mode='test', backend='cv2', transform=transform
        )
        batch_size = 64 if os.environ.get('DATASET') == 'full' else 8
        train_loader = paddle.io.DataLoader(
            train_dataset,
            places=place,
            feed_list=[image, label],
            drop_last=True,
            return_list=False,
            batch_size=batch_size,
        )
        valid_loader = paddle.io.DataLoader(
            test_dataset,
            places=place,
            feed_list=[image, label],
            batch_size=batch_size,
            return_list=False,
        )

        def train(program):
            iter = 0
            stop_iter = None if os.environ.get('DATASET') == 'full' else 10
            for data in train_loader():
                cost, top1, top5 = exe.run(
                    program,
                    feed=data,
                    fetch_list=[avg_cost, acc_top1, acc_top5],
                )
                iter += 1
                if iter % 100 == 0:
                    print(
                        'train iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'.format(
                            iter, cost, top1, top5
                        )
                    )
                if stop_iter is not None and iter == stop_iter:
                    break

        def test(program):
            iter = 0
            stop_iter = None if os.environ.get('DATASET') == 'full' else 10
            result = [[], [], []]
            for data in valid_loader():
                cost, top1, top5 = exe.run(
                    program,
                    feed=data,
                    fetch_list=[avg_cost, acc_top1, acc_top5],
                )
                iter += 1
                if iter % 100 == 0:
                    print(
                        'eval iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'.format(
                            iter, cost, top1, top5
                        )
                    )
                result[0].append(cost)
                result[1].append(top1)
                result[2].append(top5)
                if stop_iter is not None and iter == stop_iter:
                    break
            print(
                ' avg loss {}, acc_top1 {}, acc_top5 {}'.format(
                    np.mean(result[0]), np.mean(result[1]), np.mean(result[2])
                )
            )
            return np.mean(result[1]), np.mean(result[2])

        train(main_prog)
        top1_1, top5_1 = test(main_prog)

        config = self.generate_config()
        quant_train_prog = quant_aware(main_prog, place, config, for_test=False)
        quant_eval_prog = quant_aware(val_prog, place, config, for_test=True)

        train(quant_train_prog)
        save_int8 = self.get_save_int8()
        if save_int8:
            convert_eval_prog, _ = convert(
                quant_eval_prog, place, config, save_int8=save_int8
            )
        else:
            convert_eval_prog = convert(
                quant_eval_prog, place, config, save_int8=save_int8
            )

        top1_2, top5_2 = test(convert_eval_prog)
        # values before quantization and after quantization should be close
        print(f"before quantization: top1: {top1_1}, top5: {top5_1}")
        print(f"after quantization: top1: {top1_2}, top5: {top5_2}")


class TestQuantAwareNone(TestQuantAwareBase):
    def generate_config(self):
        config = None
        return config


class TestQuantAwareTRT(TestQuantAwareBase):
    def generate_config(self):
        config = {
            'weight_quantize_type': 'channel_wise_abs_max',
            'activation_quantize_type': 'moving_average_abs_max',
            'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
            'onnx_format': False,
            'for_tensorrt': True,
        }
        return config


class TestQuantAwareFullQuantize(TestQuantAwareBase):
    def generate_config(self):
        config = {
            'weight_quantize_type': 'channel_wise_abs_max',
            'activation_quantize_type': 'moving_average_abs_max',
            'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
            'onnx_format': False,
            'is_full_quantize': True,
        }
        return config


class TestQuantAwareSaveInt8(TestQuantAwareBase):
    def generate_config(self):
        config = {
            'weight_quantize_type': 'channel_wise_abs_max',
            'activation_quantize_type': 'moving_average_abs_max',
            'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
            'onnx_format': False,
        }
        return config

    def get_save_int8(self):
        return True


if __name__ == '__main__':
    unittest.main()