test_asp_utils.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation.  All rights reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import threading, time
import paddle
from paddle.fluid.contrib import sparsity
import numpy as np


class TestASPUtils(unittest.TestCase):
    def test_get_check_method(self):
        self.assertEqual(
            sparsity.CheckMethod.get_checking_method(sparsity.MaskAlgo.MASK_1D),
            sparsity.CheckMethod.CHECK_1D)
        self.assertEqual(
            sparsity.CheckMethod.get_checking_method(
                sparsity.MaskAlgo.MASK_2D_GREEDY),
            sparsity.CheckMethod.CHECK_2D)
        self.assertEqual(
            sparsity.CheckMethod.get_checking_method(
                sparsity.MaskAlgo.MASK_2D_BEST), sparsity.CheckMethod.CHECK_2D)

    def test_density(self):
        x = np.array([[1.0, 1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
                      [1.0, 0.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
                      [0.0, 1.0, 0.0, 0.0, 1.0]])
42
        self.assertEqual(sparsity.calculate_density(x), 0.56)
43
        x[:, 0] = 0.0
44
        self.assertEqual(sparsity.calculate_density(x), 0.4)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    def test_check_mask_1d(self):
        x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
                      [1.0, 1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
                      [0.0, 1.0, 0.0, 0.0, 1.0]])
        self.assertTrue(sparsity.check_mask_1d(x, 2, 4))
        self.assertFalse(sparsity.check_mask_1d(x, 3, 4))
        self.assertTrue(sparsity.check_mask_1d(x, 2, 5))
        self.assertFalse(sparsity.check_mask_1d(x, 3, 5))
        self.assertTrue(sparsity.check_mask_1d(x, 3, 6))
        self.assertFalse(sparsity.check_mask_1d(x, 4, 6))

    def test_get_mask_1d(self):
        for _ in range(10):
            x = np.random.randint(10, size=(5, 5))
            x = sparsity.get_mask_1d(x, 2, 4)
            self.assertTrue(sparsity.check_mask_1d(x, 2, 4))

            x = np.random.randn(5, 4)
            x = sparsity.get_mask_1d(x, 2, 4)
            self.assertTrue(sparsity.check_mask_1d(x, 2, 4))

    def test_check_mask_2d(self):
        x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0, 0.0],
                      [0.0, 0.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 0.0],
                      [0.0, 1.0, 0.0, 0.0, 1.0]])
        self.assertTrue(sparsity.check_mask_2d(x, 2, 4))
        self.assertFalse(sparsity.check_mask_2d(x, 3, 4))
        self.assertTrue(sparsity.check_mask_2d(x, 2, 5))
        self.assertFalse(sparsity.check_mask_2d(x, 3, 5))
        self.assertTrue(sparsity.check_mask_2d(x, 3, 6))
        self.assertFalse(sparsity.check_mask_2d(x, 4, 6))

    def test_get_mask_2d_greedy(self):
        for _ in range(10):
            x = np.random.randint(10, size=(5, 5))
            x = sparsity.get_mask_2d_greedy(x, 2, 4)
            self.assertTrue(sparsity.check_mask_2d(x, 2, 4))

            x = np.random.randn(5, 4)
            x = sparsity.get_mask_2d_greedy(x, 2, 4)
            self.assertTrue(sparsity.check_mask_2d(x, 2, 4))

    def test_get_mask_2d_best(self):
        for _ in range(10):
            x = np.random.randint(10, size=(5, 5))
            x = sparsity.get_mask_2d_best(x, 2, 4)
            self.assertTrue(sparsity.check_mask_2d(x, 2, 4))

            x = np.random.randn(5, 4)
            x = sparsity.get_mask_2d_best(x, 2, 4)
            self.assertTrue(sparsity.check_mask_2d(x, 2, 4))

    def test_threadsafe_valid_2d_patterns(self):
        def get_reference(m=4, n=2):
            from itertools import permutations

            patterns = np.zeros(m)
            patterns[:n] = 1
            patterns = list(set(permutations(patterns.tolist())))
            patterns = patterns + patterns
            patterns = np.asarray(list(set(permutations(patterns, m))))

            valid = ((patterns.sum(axis=1) <= n).sum(axis=1) == m
                     ).nonzero()[0].reshape(-1)
            valid_patterns = np.empty((valid.shape[0], m, m))
            valid_patterns[:] = patterns[valid[:]]
            return valid_patterns

        for _ in range(4):
            computing_thread = threading.Thread(
                target=paddle.fluid.contrib.sparsity.utils.
117
                _compute_valid_2d_patterns,
118 119 120
                args=(2, 4))
            computing_thread.start()
        time.sleep(3)
121
        patterns_map = paddle.fluid.contrib.sparsity.utils._valid_2d_patterns
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        reference_patterns = get_reference()
        reference_key = '4_2'

        self.assertTrue(reference_key in patterns_map)
        self.assertTrue(len(patterns_map) == 1)
        self.assertTrue((reference_patterns == patterns_map[reference_key]).all(
        ))

    def test_check_sparsity(self):
        for _ in range(10):
            x = np.random.randint(10, size=(5))
            x_2d = x.reshape(1, x.shape[0])
            self.__test_1D_2D_sparsity_checking_methods(x_2d)

            x = np.random.randint(10, size=(5, 5))
            x_2d = x
            self.__test_1D_2D_sparsity_checking_methods(x_2d)

            x = np.random.randint(10, size=(5, 5, 5))
            x_2d = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
            self.__test_1D_2D_sparsity_checking_methods(x_2d)

            x = np.random.randint(10, size=(5, 5, 5, 5))
            x_2d = x.reshape(x.shape[0], x.shape[1] * x.shape[2] * x.shape[3])
            self.__test_1D_2D_sparsity_checking_methods(x_2d)

    def test_create_mask(self):
        for _ in range(10):
            x = np.random.randint(10, size=(5))
            self.__test_1D_2D_sparse_mask_generation_methods(x)

            x = np.random.randint(10, size=(5, 5))
            self.__test_1D_2D_sparse_mask_generation_methods(x)

            x = np.random.randint(10, size=(5, 5, 5))
            self.__test_1D_2D_sparse_mask_generation_methods(x)

            x = np.random.randint(10, size=(5, 5, 5, 5))
            self.__test_1D_2D_sparse_mask_generation_methods(x)

    def __test_1D_2D_sparsity_checking_methods(self, x_2d):
        mask = sparsity.get_mask_1d(x_2d, 2, 4)
        self.assertEqual(
            sparsity.check_sparsity(
                mask, func_name=sparsity.CheckMethod.CHECK_1D, n=2, m=4),
            sparsity.check_mask_1d(mask, 2, 4))
        mask = sparsity.get_mask_2d_best(x_2d, 2, 4)
        self.assertEqual(
            sparsity.check_sparsity(
                mask, func_name=sparsity.CheckMethod.CHECK_2D, n=2, m=4),
            sparsity.check_mask_2d(mask, 2, 4))

    def __test_1D_2D_sparse_mask_generation_methods(self, x):
        mask = sparsity.create_mask(
            x, func_name=sparsity.MaskAlgo.MASK_1D, n=2, m=4)
        self.assertTrue(
            sparsity.check_sparsity(
                mask, func_name=sparsity.CheckMethod.CHECK_1D, n=2, m=4))
        mask = sparsity.create_mask(
            x, func_name=sparsity.MaskAlgo.MASK_2D_GREEDY, n=2, m=4)
        self.assertTrue(
            sparsity.check_sparsity(
                mask, func_name=sparsity.CheckMethod.CHECK_2D, n=2, m=4))
        mask = sparsity.create_mask(
            x, func_name=sparsity.MaskAlgo.MASK_2D_BEST, n=2, m=4)
        self.assertTrue(
            sparsity.check_sparsity(
                mask, func_name=sparsity.CheckMethod.CHECK_2D, n=2, m=4))